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ABSTRACT

In this paper we discuss some general graph-theoretic formalism analogous to the
chemical concepts of reactions and kits of reaction rules. We believe that this
mathematical formalism may lead to improvements in Computer-assisted Organic
Synthesis. Further we indicate that hypergraphs and its structure can be used to
model the chemical reaction network.
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INTRODUCTION

Chemical graphs are labeled graphs in which letters assigned to the vertices denote
the atoms of a molecule and letters assigned to the edges denote the bonds. They are
widely used in chemistry as representations of molecular structures. A chemical
reaction type can be viewed as a transform which, when applied to a compound,
generates new compounds. For example, benzene undergoes hydroxylation to form
hydroxybenzene. This idea has been made algorithmically explicit in a variety of
ways with respect to chemical graphs in computer-assisted organic synthesis(Barone
and Chanon,1986, Koca et al ,1989 and Ugi et al,1979 )and computer - assisted
drug metabolism (Darvas, 1988 and Beck and Cowan,1978). The goal in these
approaches is the construction of a kit of reaction rules that enables the computer to
suggest chemical paths of compounds leading to or from a compound of interest.
Koca et al. have re-examined the approach by Ugi et al. using graph theoretic
concepts. Here we see some general graph - theoretic formalism analogous to the
chemical concepts of reactions and kits of reaction rules, but freed from terminology
and assumptions that limit the applications of this formalism to a particular scientific
discipline. Such a mathematical formalism should eventually lead to improvements
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in computer- assisted organic synthesis.

Chemical pathways are diverse. They may consist of a single reaction or a complex
biochemical pathway. Figure 1 presents part of the “shikimic acid” metabolic
pathway (Bu’lock ,1965). There we see cpd.2 was hydrorxylated to give cpd.3.
Similarly, cpd.4 was hydroxylated to give cpd.5 and cpd.5 was further hydroxylated
to give cpd.6. In our analysis, “hydroxylation”, which performs a particular structural
change, will correspond to the graph-theoretic concepts of a transform. In
hydroxylation, a hydrogen atom is deleted and the atoms and bonds of a hydroxyl
group are added. The graph elements (vertices or edges corresponding to the atoms
and bonds) to be deleted by a transform will subsequently be indicated by assigning
each such element a e 1, and the graph elements to be added will be indicated by
assigning each such element a + 1. Note the asymmetry here. The reverse change,
deleting a hydroxyl group and adding a hydrogen atom is called dehydroxylation.
This asymmetry must be incorporated into our concepts of a transform. In addition,
we see that a transform acts on some compounds and not on others. In Figure 1,
compounds 2, 4 and 5 were hydroxylated but compounds 1, 3 and 6 were not. Those
graph elements used to define the local environment where a structural change will
take place, but which are neither to be added nor deleted, will subsequently be
indicated by assigning each such element a 0. Finally, Figure 1 indicates that
compound 2 is “deanimated” to give compound 5. The “deanimation” transform
perform a different structural change than the “hydroxylation” transform. Thus, a
solution to the problem of modeling chemical reaction pathways will require a
specification of a broad class of possible transforms and a set of rules for deciding
which transform is to operate where on each graph.

Figure 2 presents a graph theoretic counterpart of a chemical reaction pathway.
This figure should be viewed as involving two diagraphs M1 and M2 whose vertices
are themselves graphs. We shall refer to such diagraphs as metadiagraphs. The arcs
of the metadigraphs are the graph-theoretic counterparts of chemical reactions. Those
operations which convert one graph into another, the counterparts of “hydroxylation”
and “deanimation”, will be called transforms. A transform kit K will consist of a set
Ti of inducing transforms and a set Tb of “blocking” transforms. Rules are given
whereby an arc of a metadigraph can be considered to be an action of an “inducing”
transform in Ti not blocked by a “blocking” transform in T b. It will be seen that
metadigraph M1 in Figure 2 can be simply specified by an ordered pair ({P1}) where
K consists of a single inducing transform and a single blocking transform. It will
also be shown that any metadiggraph M admits a specification of the form (V (M),
K) for some transform kit K where V(M) denotes the set of graphs that comprise the
vertex set of M.

Semitransforms and Semiactions

We now see rigorously the notions given in the introduction following the notation
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in Chartrand and Lesniak [4]. A graph C = (V, E) together with an assignment of the
integers -1, 0, +1 to the elements (vertices and edges) of C, one integer per element,
will be called a semitransform on C if zero edges (edges assigned zeros) are adjacent
to only zero vertices, nonpositive (de 0) edges are adjacent only to nonpositive
vertices, and nonnegative (ee 0) edges are adjacent only to nonnegative vertices.

Figure 1: Part of the shikimic acid pathway

Figure 2: Two Metadigraphs
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A semitransform will be illustrated by indicating negative, zero and positive edges
with dashed, solid and dotted lines, and indicating negatives, zero and positive
vertices with x’s, solid dots and circles, respectively, Figure-3 shows three

Figure 3:  Some Semitransforms

semitransforms.

Let t be a semitransform on C. Four graphs will be commonly associated with t.
Graph C is the covering of t. The nonpositive elements of t define the ingraph I of t;
the nonnegative elements define the outgraph O of t; and the zero elements define
the linking graph L of t. The restrictions on the assignment function assure that I, O
and L are well-defined. In Figure 3, the covering graph of t3 is the cycle C3, the
ingraph and outgraph are both P

3
 paths. The linking graph is the union of K

1
 and P

2
.

The graphs C, I, O and L will be called the defining graphs of t. These letters, with
appropriate superscripts and subscripts, will denote the defining graphs of a
semitransform with corresponding superscripts and subscripts. Clearly, if any three
of the defining graphs of a semitransform, when viewed as labeled subgraphs of C
are known or if the ingraph and outgraph are known, all of the defining-graphs are
completely determined. Defining the cardinality |G| of the graph G = (V, E) by |G|
= |V | + |E|. We obviously have |I| + |O| = |C| + |L| (1) ; p(I) + p(O) = p(C) + p(L)
(2); and q(I) + q(O) = q(C) + q(L) (3); where p(G) and q(G) denote the order and
size of graph G.

There are many ways to form a semitransform having G for its ingraph and G2  for
it’s outgraph. To see this, let C be any common supergraph of G and G’. Let I and O
denote labeled subgraphs of C that are isomorphic to G and G’, respectively. Then
the semitransform having I and O as the ingraph and outgraph is such a transform.
Note that C will be the covering graph of that transform only if I and O cover C,
i.e., every element of C is an element of either I or O. Let t be a semitransform on C
= (V, E) with assignment function g: V *” E ’! {“1, 0, 1} and let t’ be a semitranform
on C’ = (V’, E’) with assignment function h: V’*” E’ ’! {“1, 0, 1}. Then t and t’ are
isomorphic and we write t H” t’, if there exists an isomorphism f : V ’! V’ between
C and C’ such that g(v) = h(f(v)) for all v “ V and g(uw) = h(f(u)f(w)) for all uw “ E.
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Let t be a semitransform on C with assignment function g. Let C’ be a labeled
subgraph of C and let g’ be the restriction of g to the elements of C’. The graph C’
together with g2  is a semitransform t’ called a subtransform of t. If in addition, t’
has as many nonzero elements as t, then t’ is a reduction of t. If t” is any other
semitransform isomorphic to t’, then t” is also called a subtransform (or reduction
if such is the case) of t. The semitransform t2 is reduction of the semitransform t3 in
Figure 3. If t’ is a reduction of t, then t is an extension of t’. Clearly, if t’ is a
reduction of t, then |X| “ |Y | = |X’| “ |Y’| (4); p(X) “ p(Y ) = p(X’) “ p(Y’) (5); q(X)
“ q(Y ) = q(X’) “ q(Y’) (6); Where X and Y denote any pair of defining graphs of t
and X’ and Y’ denote the corresponding pair of defining graphs of t’.

Let (G, G’) be an ordered pair of graphs, and let t be a semitransform. We shall say
(G, G’) is a semiaction t if there exists an extension t’ of t such that G and G’ are
isomorphic to the ingraph and outgraph of t’. The extension t’ is called a semioverlay
of (G, G’) with respect to t. Clearly, every semitransform t is a semioverlay of (I, O)
with respect to t itself where I and O denote the ingraph and outgraph of t. Let (G,
G’) be any semiaction of t having ingraph I outgraph O. It follows directly from
equations (5) and (6) that p(G’) = p(G)+p(O)”p(I) (7); q(G’) = q(G)+q(O)”q(I)
(8); |G’| = |G|+|O|”|I| (9);

Example 1

Let (G, G’) be any semiaction of t
1
 in Figure 3. Let t be any overlay of (G, G’) with

respect to t
1
 and let C, I, O, L denote the defining graphs of t. Then the linking graph

L of t contains all the vertices and edges in I and O except for one edge, say uy, of
I where u “ V (L) and y ∉ V (L) and one edge of O adjacent to u, say uz where z V
(L). Define the function f: V (I) ’! V (O) by f (v) = v if v = y and f(v) = z if v = y.
Clearly, f defines an isomorphism between I and O. Thus if (G,G2 ) is a semiaction
of t, then GE” G2 : It might be pointed out that equations (7) and (8) imply that G
and G2  have identical orders and sizes since I and O have identical orders and
sizes.

A graph G is transformable into G’ by an edge rotation if G contains distinct vertices
u, v, w such that uv e E(G); uw  E(G) and G2  He Geuv+uw (5). An edge rotation is

Figure 4. Various overlays of (G5, G6)
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an edge shift, if in addition, vw e E (G) (9). It is a straightforward matter to show
that G is transformable into G’ by an edge rotation (edge shift) if and only if (G, G’)
is a semiaction of t

2 
(t

3
) in Figure 4.

Transforms and Actions

Let G and G’ be two graphs. A maximum common subgraph of G and G’ is a graph
H of maximum cardinality which is isomorphic to a subgraph of both G and G’. A
minimum common supergraph of G and G’ is a graph H of minimum cardinality
which is isomorphic to a supergraph of G and G’. (See [8] for other uses of maximum
common subgraphs and minimum common supergraphs, referred to there as
maximum intersections and minimum unions, for comparing graphs of arbitrary
order and size). A semi overlay t’ of (G, G’) with respect to a semi transform t is an
overlay of (G, G’) with respect to t if the linking graph of t’ is a maximum common
subgraph of G and G’. It follows directly from equation 1 that the linking graph of
t’ is a maximum common subgraph of G and G’ if and only if the covering graph of
t’ is a minimum common supergraph of G and G’.

Figure 4 gives three overlays of graphs G
5
 and G

6
. Note that overlays O

1
 and O

2

have isomorphic linking graphs but nonisomorphic covering graphs while overlays
O

2
 and O

3
 have nonisomorphic linking graphs.

A semiaction (G; G2 ) of a semitransform t is an action of t if t is a reduction of an
overlay of (G, G’). A semitransform t is a transform if there exists an action of t.
The following theorem establishes a consistency relationship between actions and
overlays.

Theorem 1:  A semioverlay of (G, G’) with respect to t is an overlay with respect to
t if and only if (G, G’) is an action of t.

Proof: By definition, if t’ is an overlay of (G, G’) with respect to t, then (G, G’) is
an action of t. To establish the only if relation, assume (G, G’) is an action of t and
t’ is a semioverlay of (G, G’) with respect to t. By definition, there exists an overlay
t’’ of (G, G’) with respect to t. Using equation (4) with X = I and Y = L, we have |G|
= |I’ | = |L’|+|I’|e|L’ | = |L’|+ |I|e|L|; (10); and |G| = |I’’| = |L’’| + |I’’| e |L’’| = |L’|
+ |I| e |L|; (11). Equating the right hand sides of equations (10) and (11), we have
|L’| = |L’’|. Since L’ is a subgraph of both G and G’ of cardinality |L|, L’ must be a
maximum common subgraph.e
Not all semitransforms are transforms. In particular, the semitransforms given by
t
1
, of Figure 3 are not. To see this, suppose (G, G’) were an action of t

1
. By definition,

there exists an extension t of g
1
 which is an overlay of (G, G’). Let C, I, O, L be the

defining graphs of t. Then I Ee G and G2  Ee O. However, we showed in Example
1 that G Ee G2 . Since t is an overlay, L is a maximum common subgraph of I and
O, and consequently, L = I = O, i.e., t contains only zero elements. Since t

1
 is a

reduction of t, t
1
 contains only zero elements, a contradiction. Thus t

1
 cannot be a

transform.
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   Let ST, SO, T and O denote the set of semitransforms, semioverlays, transforms
and overlays. When defining semioverlays, it was shown that ST = SO. It has just
been shown that T is a proper subset of ST. To see that O is s proper subset of T, note
that the linking graph of t

2
 in Figure 3 is the complement of K

3
 while the maximum

common subgraph of the ingraph and outgraph of t2 is P2 *e K1. Thus, t2 is not an
overlay. To show that t

2
 and t

3
 of Figure 3 are transforms, let GEe K (1, 3) and G2Ee P4. Let t be defined by t4 of Figure 5. Let C, I, O and L be the defining graphs of

t. Since G Ee I and G2  Ee O, t is a semioverlay of (G, G’). Clearly L Ee P
3
 *e K

1
 is

a maximum common subgraph of G and G2 . Thus, t is an overlay. Now we simply

Figure  5: An overlay and a semioverlay with respect to t3

note that both t
2
 and t

3
 are reductions of t.

It should also be noted that not all semiactions of a transform are actions of that
transform. To see this, let t’ be defined by t

5
 of Figure 5. Clearly, t’ is a semioverlay

of (P4, P4). Since t2 and t3 of Figure 3 are reductions of t’, (P4, P4) is a semiaction of
both t

2 
and t

3
. However, the linking graph of t’ is P

2
 *” P

2
; which is not a maximum

common subgraph of P4 and P4. Thus, t’ is not overlay of t3, and consequently not of
t
2
. If follows from Theorem 1 that (P

4
, P

4
) is not an action of either t

2
 or t

3
.

Let S(t) and A(t) denote the sets of semiactions and actions of t. It would be nice to
be able to prove that A(t) = A(t2 ) implies t E” t2 .

Specification of Metadigraphs

A metadigraph M is a possibly infinite, diagraph D = (V, E) together with an injective
function g: V ’!  that assigns a unique graph in 0 to each vertex of D. Thus a
metadigraph can be considered to be a labeled digraph in which the set of labels is
a set of unlabeled graphs. It follows that we can uniquely and unambiguously denote
M by ( Eg) where is the image set g(V ) of V and Eg = {g(u)g(v) : uv “ E} i.e., we can
uniquely represent M by ( Eg). Examples of two metadigraphs were given in Figure
2. Let M’ be another metadigraph D’ = (V’, E’) with assignment function h, and let
(Eh) denote its corresponding labeled graph representation. ME”M’ if there exists
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an isomorphism f: V ’! V’ between D and D’ such that g(v) = h(f(v)) for v “ V.
Clearly ME”M’ if and only if their corresponding labeled graph representations (
Eg) and (Eh) are identical ie., and Eg = Eh. Thus we shall say M is a submetadigraph
of M’ if and Eg  Eh.

An ordered pair (Ti; Tb) of possibly infinite, sets of transforms is a transform kit. An
action (G, G’) of t is blocked by t’ if (a) t’ is an extension of t, (b) (G, G’) is an
action of t’ and (c) t’” Tb. Let A(t|Tb) denote the actions of t that are not blocked by
t’ for any t’” Tb.

Clearly, A(t|Tb) = A(t)”, where the union is over those t’ in Tb which are extensions
of t. An ordered pair (G, G’) of graphs is an action of k = (T,i Tb) if (G, G2 ) “ A(t|Tb)
for some t “ Ti. A graph G2  will be said to be K-reachable from G if either G’E” G
or there exists a sequence G1, G2, Gn such that GE”G1, G’E” Gn and (G

i
, Gi+1) is

an action of K for i = 1, 2,…, n”1. Let be a set of graphs and let K be a transform
kit. Define the metadigraph M (K) as the metadigraph (E) where  is the set of
graphs which are K-reachable from a graph in and where E is a subset of whose
members are actions of K. Given a metadigraph M, we shall say that (K) is a
specification of M if M (K) = M.

Example 2

Let t4 and t5 be defined by Figure 6. Let K = ({t4}, {t5}) and let M = ( E) denote the
metadigraph M

1
 in Figure2, ie., = {P

n
 : n = 1,…} and E = {(P

i
, P

i+1
) : i = 1,…}. Then

({P 1}, K) is a specification of M. To see this, we simply note that for every graph G
and every vertex u “ V (G), (G, G + u + uv) is an action of t

4
 where u V (G).

Similarly, (G, G + u + uv) is an action of t if and only if the deg (v) > 1. It follows
that if (G, G2 ) is an action of K, then GE”2  G + u + uv where deg (v) < 2. Thus if G
is a path P

i
, then G2  E” P

i
 + 1. Since every path is K-reachable from P

1
, it follows

that

({P
1
}, K) is a specification of M.

Figure 6: Transforms
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Example 3

Let M be metadigraph M
2
 in Figure 2, and let t

i
 i=6,..., 9 be transforms defined by

Figure 6. Define Ti = {t6, t8
} and Tb = {t7; tg

} and let K be the transform kit (Ti; Tb).
Then ({G

1
}, K) is a specification of M. To see this, note that t

6
 performs an edge shift

of the form G “ uv + uw where v is adjacent in G to a vertex w with deg (w)> 1,
while t

7
 blocks those cases in which u is not a terminal vertex. Likewise, t

8
 adds an

edge between vertices u and v which are not adjacent, but   which are both adjacent
to another vertex w, while t

9
 blocks those cases in which deg (w) = 2.

We now prove as a corollary to the following theorem that ’any metadigraph admits
a specification for some K. First we prove a lemma.

 Lemma 1: If t is a reduction of a semitransform t2  for which IE” I2  and OE” O2
, then tE” t2 .

Proof: To see that the reduction condition is essential, let t be defined by transform
t
5
 in Figure 5, and let t2  be the transform for which C2 E” P

4
E” L’. Since LE”P

2
*”P

2
,

t and t2  are not isomorphic. On the other hand, IE” OE” P4E” I2  E” O2 . Thus, the
lemma fails without the reduction condition.

By definition, t is isomorphic to a reduction t” of t2  for which I” and O” are labeled
subgraphs of I2  and O2 . since I”E” IE” I2  and O”E” OE” O2 , it follows that I” =
I2  and O” = O2 . Thus t” = t2 . Since tE” t”, transitivity implies tE” t2 .
Let T

o
 denote the set of all transforms. Theorem 2 and its corollary show that T

o
 can

be used to prove that all metadigraphs admit a specification with respect to some
transform kit.”
Theorem 2: Let K = (T i, T b) be the transform kit based on any partitioning {T i, T
b} of T

o
 such that every member of T i is an overlay. Then (G, G2 ) is an action of K

if and only if there exists an overlay of (G, G2 ) in T i.

Proof: Assume that there exists an overlay t and Ti of (G, G2 ), i.e., IE” G and OE”
G2 . If (G, G2 ) is not an action of K, then the action (G, G2 ) must be blocked by
some ti “ Tb. This implies that I is a subgraph of I2  and O is a subgraph of O2 . By
definition, (G, G2 ) must be an action of t2  i.e., t2  is a reduction of an overlay of
(G, G2 ). This implies that I2  is a subgraph of G and that O2  is a subgraph of G2
. It follows that IE” I2  and OE” O2 . By Lemma, tE” t2 , a contradiction since Ti and
Tb are disjoint sets.

On the other hand, assume (G, G2 ) is an action of K. Then (G, G2 ) “ A(t|Tb) for some
t “ Ti. Let t2  be any extension of t such that (G, G2 ) is an action of t2 . If t2  “ Tb, then
(G, G2 ) A (t|T b). Thus, all extensions of t having (G, G2 ) as an action must be in T2.
But (G, G2 ) “ A(t|Tb) implies the existence of an overlay t2  of (G, G2 ) with respect
to t. As an extension of t having (G, G2 ) as an action, t2  must lie in T i, i.e., there
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exists an overlay of (G, G2 ) “ T i. “
Corollary 1: For any metadigraph M, there exists a transform kit K such that (V
(M), K) is a specification of M.

Proof: Write M = (E). For every edge GG2  “ E, form an overlay of (G, G2 ) as
noted in the section on semitransforms by letting the covering graph be a minimum
common  supergraph of G and G’. Let Ti denote the set of overlays so formed, and
let K = (T i; T

o
 “T i). By Theorem 2, GG2  is an action of K if and only if GG2  is an

edge of M. Since M and M ( K) have identical vertex set, M = M ( K). As there
generally exists many overlays of a pair (G, G2 ) of graphs, there will generally be
many kits K that satisfy the conditions of the preceding proof.”
Also see (for more) [5], [10], [11], [12], [13], [14].

Graph Theoretical Interpretation of Chemical Reaction Networks

(Heckel ,2006)gives an excellent overview of basic graph transformation theory. It
consists of an easy to-follow description of graph transformation systems including
the representation of systems as graphs (type and instance graphs), rules and
transformations, constraints and application conditions. To explain its most basic
functionality, a rule first looks for a pattern match for the left side of the rule in the
input graph. Then, edges and nodes that are not in the right hand side of the rule are
deleted, while edges and nodes that are newly created in the right hand side are
placed into the graph. This paper will be invaluable as a reference to basic concepts.

Modeling molecules and reaction networks using graphs is described as a very
natural application by much of the literature (Benko et al , 2003, Clark,2004 and
Rossello et al ,2005)discuss how a form of graphs is already a fundamental part of
organic chemistry, when depicting molecules by their structural formula. Atoms
can naturally be seen as nodes in a graph, with the bonds between them represented
as bi-directional edges. Double bonds and triple bonds could be modeled as two
edges and three edges respectively (as represented in Benko et al ,2003)) but this
would only be useful if a reaction involved the breaking of one of the double bonds
in one or more of its elementary steps (this may be useful for the esterification case
study).

The problem with this basic approach, however, is a loss of information about
spatial configurations i.e. cis and trans isomers and chirality. Furthermore, the
valencies of individual atoms (the no. of other atoms it can bond to) are not
automatically conserved(Ehrig et al ,2006) offers an alternative approach that should
be much more intuitive for chemists. By modeling the atoms as hyperedges and the
bonds between them as nodes, valency and chirality can both be incorporated into
the model. Each hyperedge is typed by atom, allowing for different numbers of
joined nodes, therefore the concept of valency is preserved. The outgoing bondnodes
from a hyperedge are labeled in order to show the three-dimensional ordering (related
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to D-glyceraldehyde), and preserving chirality. This is particularly important for
reactions where one enantiomer is more reactive in an elementary step, or where
only one enantiomer binds with a particular substrate. This is more prominent in
biochemical systems. The example of Citrate binding with Aconitase is given in
(Ehrig et al 2006).

From the representation of molecules as graphs, envisioning reactions between
molecules as graph transformations is not a big step. Both (Rossello  et al, 2005
and Yadav et al 2004) describe how reactions involve the breaking and creation of
bonds in a molecule to transform it into a different molecule. In the graph, this
would mean an elementary reaction step would involve the deletion of edges (bonds)
and nodes not appearing in the right hand side of the rule, and the creation of edges
and nodes that appear on the right hand side of the rule. As nodes and edges can
have attributes, attributes may also be updated during the transformation. Such
attributes could indicate energies of bonds, valencies or other useful information.

Another reason why graph transformation representations are so natural is their
“inherent concurrency” (Ehrig et al ,2006). This is the ability for these systems to
allow simultaneous reactions of different reactants, which is obviously what happens
in real chemistry. Causal dependencies can be monitored along with conflicts, using
critical pair analysis. (Rossello  et al ,2005) attributes the strength of graph
transformations in this field to their “pattern handling power”. In any chemical
reaction network, involving an arbitrarily large number of molecules, a multitude
of simultaneous reactions are possible. However, graph transformation rules define
the standard reactivity of certain functional groups.

Pattern matching provides a powerful search method for where these rules can be
applied within the network. This will be explored in both our case studies and a
more thorough explanation is giving in later sections of this report. (Ehrig  et al
,2006) explains how graph transformations work in detail, by summarizing the so-
called double pushout approach. The left side and right side of the rule span show
how the molecule will change, whereas the gluing graph between the left and right
hand side simply indicates which elements are involved (“read”) in the rule, but not
consumed. In the “toy” model of artificial chemistries given in (Benko et al ,2003)
the essential idea is the same, but the gluing graph is labeled the context. The
visualization is also much more attuned to the structural formula representation
used by chemists - atomic/group nodes are just labeled by element symbols and the
edges replaced by standard bond representations (with double and triple bonds
preserved). Although this may be more intuitive for chemists, it does not allow us to
easily show attributes of nodes or edges, and also may seem alien to the way the
graphs will look in their eventual implementation using tools such as AGG. Using
standard graph representations should be easy enough to understand so the further
simplifications in the toy model are not necessary.
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(Ehrig 2006) suggests 3 types of rules in any graph transformation system. Symmetry
rules are useful for the hyperedge model. Although chiral molecules cannot rearrange
their spatial configuration with respect to the other groups around the chiral carbon
centre, the bond connected to this carbon can itself rotate, meaning the groups can
change position. So that this is not considered a separate molecule, equivalence
rules can be set up. Expansion rules allow us to expand atoms grouped together in
one node/hyperedge (usually for simpler representation) into their full expanded
graph. This is necessary if at some point in the graph the details of the group become
important e.g. one of the atoms is involved in a reaction. Again, this contracted
representation is familiar for chemists, who often contract large groups in structural
formula when their exact spatial details are not contextually important. Reaction
rules define the change of groups. Our model should definitely incorporate the second
and third types of rules, and consider the symmetry rules if the chirality preserving
hyperedge model is used.(Ehrig et al,2006)Ehprovides some other invaluable
information about how graph transformation theory can be applied to reactions,
and how atoms can be traced throughout the reaction and will serve as good reference
material.

Stochastic graph transformation systems and rates of reaction

Heekel ,2005 and Heckel  et al,2004 are excellent references explaining the extension
of a graph transformation system to a stochastic graph transformation system. Given
a start graph and a graph transformation system, a labeled transition system can be
deduced which shows all the possible states (graphs) possible. Applied to a reaction
network, each state would represent all the species (reactants, products, by-products
and intermediates) that would result from applying the graph transformation rules.
Labels from state to state can be assigned attributes such as a probability of reaction.
This is analogous to the rate of the transformation from one step to the next, hence
essential to our derivation of the overall rate of reaction.(Heckel ,2005) provides
all the necessary definitions and procedures needed to convert a stochastic graph
transformation system to a Continuous Time Markov Chain, which then allows the
application of stochastic temporal logic to deduce long-term non-functional stochastic
properties of the system. Equivalence rules can be set up which check for certain
properties of the system at any point during the progress of the simulation, thereby
allowing us to monitor the presence of molecules for example. Querying the system
at regular intervals can then allow us to effectively measure properties proportional
to the concentration of chemical species.

Paper (Heckel, 2005)demonstrates the application of stochastic graph
transformations to P2P networks. Although the model is simpler (in that the rates
are more easily assigned) the example will be invaluable in understanding how
stochastic systems are applied. As the theory behind stochastic graph transformations
(Continuous Time Markov Chains, Qincidence matrices, Stochastic Temporal Logic)
can be quite difficult to grasp, both of these papers will be useful to return to. In
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deciding the rates of elementary steps, paper (Benko et al ,2003) provides a very
good starting point.

As discussed earlier, the Arrhenius equation relates the change in energy between
reactants and products with a rate of reaction. (Benko et al ,2003) discusses a
refinement where instead of entire molecules, just the energy of hybridized orbitals
involved in the reaction are considered. For complex reactions such as case study 2
we can follow the methodology described in (Benko et al ,2003) and automate the
procedure of assigning energies by looking at recurring sections of molecules
(characterized by different hybridized orbitals) rather than entire molecules. This
generalization step would avoid having to manually determine and assign energies
for the high number of possible species involved in the reaction (i.e. chains of many
different lengths). It can incorporate more complicated electronic distributions
accurately into the model, such as -stabilization where adjacent -bonding orbital
can overlap in a molecule, lowering their overall energy and making them more
resistant to breaking and therefore reaction. (Benko et al ,2003) also describes how
this method accounts for regioselectivity within a molecule. i.e. if there are two
places where a rule can be applied, calculating energies would force the rate of
reaction at one site to be realistically higher than the other. (Benko et al ,2003)
actually goes on to suggest that the calculation of energies could be used for stochastic
simulations of reaction networks using the Gillespie algorithm.

There are other methods in the literature that are used to model stochastic systems.
(Cardelli ,2008)and (Keeler ,1999) both use process languages to specify the reaction
rules and to derive useful properties. Cardellis paper (Cardelli ,2008) is particularly
useful as it sets out to achieve what this project does using stochastic process algebra,
namely CCS and CGF. While this approach is probably more intuitive and precise
for computer scientists, it loses its appeal for chemists due to its technical complexity.
The visual graph representation is much more useful in this respect because the
components are easily recognizable to chemists. The content of the paper is quite
technical and without a background in logic and automata course requires substantial
background reading to understand fully. The paper is therefore currently of limited
use. Nevertheless, it would be highly advisable to understand Cardellis approach,
in order to note his assumptions and the way in which he assigns rates to elementary
reaction steps. For this reason, a quick overview of -calculus (provided by Milner
2007)) and subsequent research into CCS still needs to be undertaken.

Implementation tools

AGG  is widely used by the graph transformation academic community. A brief
description of its utilization to a chemical reaction setting is given in (Ehrig et al
,2006). AGG does have several limitations for our purposes though. Firstly, it cannot
be used for stochastic simulations. To obtain stochastic data, a combination of PRISM
and GROOVE (as described in (Heckel  2005) and Heckel et al 2004)) could be
used. (Erhard et al ,2008)also provides a very thorough presentation of FERN, a
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Java framework that can be used for stochastic simulation. The API seems fairly
straightforward. It does not however provide its own visualization module. AGG
also has its own Java API and a combination of the two tools could be coordinated
to fit the needs.

Further investigation of (Erhard et al ) will be necessary to achieve this. An appealing
feature of (Erhard et al,2008) is that it provides implementations of several stochastic
simulation algorithms, namely the Gillespie algorithm, extended Gillespie algorithm
and a tau-leaping algorithm. The framework applies the most appropriate algorithm
depending on the speed of the reaction, and can even change dynamically during
runtime. Other limitations of the software should also be considered before using
AGG such as minimum requirements, known bugs and elements of graph
transformation theory that are not implemented (such as the ability to input
hyperedges). The user manuals, bug reports and examples which can be found at
should be reviewed before/while using the tool.

Consideration for more complete modeling

Despite being an overview paper that has little relevant technical content, Yadav et
al ,2004)does illuminate some interesting points to consider if we are to progress to
a more complete model of real chemistries. In particular, “Global Context
Sensitivity” is discussed. This states that physical properties play an important role
in chemical reactions, such as temperature, solvent, viscosity, catalysts and radiation
to name just a few. A graph transformation model may be limited in its ability to
incorporate such factors. This should be taken into account in the final stages of the
project. “Local Context Sensitivity” considers for example the “three dimensional
conformation of reactive groups” of a molecule and how this affects reactivity.
Large groups for example may block collision with incoming molecules, thereby
hindering reaction rates.

The graph structure of the chemical reaction network is restated explicitly in terms
of graph theory, precisely hypergraph theory. For example what is the graphical
interpretation of the null space of the stochiometric coefficient, and what about its
orthogonal complement? To that end we review the theory of flows on graphs. We
then consider the possibility of such a theory for flows on hypergraphs. A few formal
results are obtained. We also pose a number of problems for future consideration.

Hypergraph Basics and the Model

A weighted hypergraph is an ordered triple H (V, E, 5Ø—ß) (or just H). V or V (H)
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is a set of vertices, and | V |= m. E or E(H) is a set of edges, subsets of V each of
which contains at least two vertices, and | E |= m; w : V × E ’! N + is a function
which assigns a weight w

ij
 to each v

i
 e e

j
 . If v

i
 e

j
, then w

ij
 is by default zero. Note

that H contains no self loops. A regular hypergraph is just a weighted hypergraph
with all weights set to zero or one. Note that a graph is a hypergraph G such that ee

je E, | e
j
 |= 2.

A directed weighted hypergraph is a weighted hypergraph H together with an
orientation ó, and is denoted H : : E ’! H×T is a function which partitions every e

j“ E into a head set h
j
 and a tail set t

j
 .

 H5Øß admits the incidence matrix representation S” M
m,n

(Z):

Figure 7: A directed weighted hypergraph, represented according to the Sinanoglu
formalism. Weights appear in the figure as multiple connections.

Of course, H admits an incidence matrix representation given by | S |. An example
of a directed weighted hypergraph appears in Figure 7. Precisely, the figure is a
Sinanoglu representation of a hypergraph (this formalism provides the clearest
graphical depiction of the type of hypergraphs presently under consideration).
According to this formalism, a directed edge is represented by a pair of white nodes
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connected by a dashed line. The error along the dashed line points from the ‘tail set
node’ of the edge to the ‘head set node’ of the edge. Of course, when a vertex is
connected to a tail or head set node, the vertex is said to be in that set. The weight
associated with that vertex of the edge can either appear as a numerical label on its
connection or graphically as multiple connections (the second formalism is used in
Figure 7). The incidence matrix associated with Figure 7 is

We relate the chemical reaction network and the directed weighted hypergraph by
making the associations between vertices and chemical species, edges and reactions,
head and tail sets and reaction products and reactants, respectively, and weights
and stoichiometric coefficients. Under this association (in so far as the given
definition of a hypergraph allows), catalysts are ignored. It is evident that the
incidence matrix is precisely the stoichiometric matrix of the reaction network.

The theory of hypergraphs has not been elaborated in the great detail that is has for
the theory of graphs. However, a few important references do exist. For a somewhat
technical introduction to the field, see [15].

Cuts and Flows on Hypergraphs

The material of this subsection is adapted with modification from Chapter 14 in
[(Godsil and Royle ,2001). It also draws upon (Cardelli 2008)

Let RE denote the real vector space with coordinates indexed by the edges (precisely,
their indices) of H. The row space of S, that is the subspace of RE spanned by the
rows of S, is known as the cut space of H5Øß. And the orthogonal complement of the
cut space is called the flow space of H. So the cut space is the set of all vectors x “
RE satisfying Sx = 0. By an abuse of notation we will simply refer to the cut and
flow space of H with the understanding that is fixed. In the following, these terms

will be justified.

The cut space

If (U, V) is a partition of V (H) (the vertex set of H), into two nonempty subsets.
The set of edges e “ E (H) with e)”U `”Õ and e )” V `”Õ is a cut, denoted C. We
shall call U and V the shores of a cut. A nonempty cut that is of minimal size is
called a bond.
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An oriented cut is a cut with one shore declared as positive V (+), and one shore
declared as negative V (“). Using the orientation of H, that is using H5Øß, an oriented
cut C determines a vector z eRE as follows:

We refer to Z as the signed Characteristic vector of the oriented cut C; we will
have reason to introduce the more complete notation z(C). For a given oriented cut,
reversing the direction on the direction of the edges of H changes the sign of z.
However, it is not necessarily the case that the signed characteristic vector is invariant
if all signs in Equ (B) are switched, that is, if we define the sign characteristic
vector in terms of V (“) instead of V (+).

We call an edge e
j
 balanced if

We speak of a balanced hypergraph every edge H is balanced. The components of
the sign characteristic vector associated with balanced edges are invariant with
respect to the two definitions of the characteristic vector described above. So, in a
balanced hypergraph the sign characteristic vector is invariant with respect to the
two definitions.

Each vertex v
i
 determines an oriented cut C (v

i
) with positive shore {v

i
} and negative

shore V (H) \ v
i
. The ith row of S is the signed characteristic vector of the cut C (v

i
),

so these vectors lie in the cut space of H.

Theorem 3: If H is a balanced hypergraph, then for every cut C

Proof: We consider the sum on the RHS of Eq. (C). Let p a”| V (+) | and I = (i
1
,…,

i
p
) an index set for the elements of V (+). Then, by the definition of the signed

characteristic vector

  (k = 1,…, p) and the prior sum

evaluates to zero. Otherwise,

If e
j
 V (+) (so e

j
 C), then by the fact that H is balanced, the prior sum evaluates to
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zero. Otherwise, e
j
 “C. The desired result follows from the definition of the signed

characteristic vector.”
Corollary 2: If H is a balanced hypergraph, then the signed characteristic vector of
each cut lies in the cut space of H.

 I suspect that more can be said of the cut space. In particular, there should exist
upper and lower bounds on the dimension of the cut space, if not a precise value,
that can be determined from basic topological properties of the hypergraph. And,
some minimal forest on a hypergraph should act as an alternative basis for the cut
space. This basis would have the advantage that it more accurately describes
“fundamental” transport structures of the hypergraph. These issues will be considered
in the future work.

The flow space

The flow space of H is the orthogonal complement of the cut space, so consists of
all vectors x e RE such that Sx = 0. We would like to extend the results from the
theory of flows on graphs just we have done for cuts of graphs. However the manner
by which to proceed becomes less clear than in the previous case. Whereas in the
previous section we were able to extend the definition of a cut, in this case we must
appropriately restrict the definition of a cycle. The precise definition of a cycle,
which in its present form will seem like less of a restriction than it aught, is quite
cumbersome and requires additional formalism. Lacking follow up results to justify
such formalism, we refrain from said tedium.

Other Aspects in the Theory of Hypergraphs

We define the linearization of H to be the directed weighted graph (H) obtained by
collapsing tail sets and headsets to single nodes of a graph. This construction then
admits analysis according to the usual techniques of graph theory. It should be
noted that this linearization resembles in some ways the technique of principle
component analysis in graph theory.

A few obvious remarks can be made of this constructive. First, the time that it takes
to perform the linearization ostensibly scales with the number of edges in the
hypergraph. Second the dimension of the flow space of (H) provides an immediate
upper bound on the dimension of the flow space of H. It would also be nice if there
were a simple algebraic matrix operation that could immediately yield matrix of
(H).
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