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ABSTRACT

In this paper we discuss some general graph-theoretic formalism analogous to the
chemical concepts of reactions and kits of reaction rules. We believe that this
mathematical formalism may lead to improvementsin Computer-assisted Organic
Synthesis. Further we indicate that hypergraphs and its structure can be used to
model the chemical reaction network.
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INTRODUCTION

Chemical graphsarelabeled graphsin which letters assigned to the vertices denote
the atoms of amolecule and | etters assigned to the edges denote the bonds. They are
widely used in chemistry as representations of molecular structures. A chemical
reaction type can be viewed as a transform which, when applied to a compound,
generates new compounds. For exampl e, benzene undergoes hydroxylationto form
hydroxybenzene. Thisidea has been made algorithmically explicit in avariety of
wayswith respect to chemical graphsin computer-assisted organic synthesis(Barone
and Chanon,1986, Koca et al ,1989 and Ugi et al, 1979 )and computer - assisted
drug metabolism (Darvas, 1988 and Beck and Cowan,1978). The goal in these
approachesisthe construction of akit of reaction rulesthat enablesthe computer to
suggest chemical paths of compounds leading to or from a compound of interest.
Koca et al. have re-examined the approach by Ugi et al. using graph theoretic
concepts. Here we see some general graph - theoretic formalism anal ogous to the
chemical concepts of reactionsand kits of reaction rules, but freed from terminology
and assumptionsthat limit the applications of thisformalismto aparticular scientific
discipline. Such amathematical formalism should eventually |ead to improvements
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in computer- assisted organic synthesis.

Chemical pathwaysarediverse. They may consist of asinglereaction or acomplex
biochemical pathway. Figure 1 presents part of the “shikimic acid” metabolic
pathway (Bu'lock ,1965). There we see cpd.2 was hydrorxylated to give cpd.3.
Similarly, cpd.4 was hydroxylated to give cpd.5 and cpd.5 wasfurther hydroxylated
togivecpd.6. Inour anaysis, “hydroxylation”, which performsaparticul ar structural
change, will correspond to the graph-theoretic concepts of a transform. In
hydroxylation, a hydrogen atom is deleted and the atoms and bonds of a hydroxyl
group are added. The graph elements (vertices or edges corresponding to the atoms
and bonds) to be deleted by atransform will subsequently beindicated by assigning
each such element a e 1, and the graph elements to be added will be indicated by
assigning each such element a + 1. Note the asymmetry here. The reverse change,
deleting ahydroxyl group and adding a hydrogen atom is called dehydroxylation.
Thisasymmetry must beincorporated into our concepts of atransform. In addition,
we see that a transform acts on some compounds and not on others. In Figure 1,
compounds 2, 4 and 5 were hydroxylated but compounds 1, 3 and 6 were not. Those
graph elements used to definethelocal environment where astructural changewill
take place, but which are neither to be added nor deleted, will subsequently be
indicated by assigning each such element a 0. Finally, Figure 1 indicates that
compound 2 is “deanimated” to give compound 5. The “deanimation” transform
perform a different structural change than the “hydroxylation” transform. Thus, a
solution to the problem of modeling chemical reaction pathways will require a
specification of abroad class of possibletransforms and a set of rulesfor deciding
which transform is to operate where on each graph.

Figure 2 presents a graph theoretic counterpart of a chemical reaction pathway.
Thisfigure should be viewed asinvolving two diagraphs M, and M, whose vertices
arethemselves graphs. We shall refer to such diagraphs as metadiagraphs. Thearcs
of the metadigraphs are the graph-theoretic counterparts of chemical reactions. Those
operationswhich convert one graph into another, the counterparts of “hydroxylation”
and “deanimation”, will be called transforms. A transform kit K will consist of aset
T of inducing transforms and a set T° of “blocking” transforms. Rules are given
whereby an arc of ametadigraph can be considered to be an action of an “inducing”
transform in T' not blocked by a “blocking” transform in T ®. It will be seen that
metadigraph M, in Figure 2 can be simply specified by an ordered pair ({P,}) where
K consists of a single inducing transform and a single blocking transform. It will
also be shown that any metadiggraph M admits a specification of theform (V (M),
K) for sometransform kit K where V(M) denotesthe set of graphsthat comprisethe
vertex set of M.

Semitransformsand Semiactions
We now seerigorously the notions given in theintroduction following the notation
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in Chartrand and Lesniak [4]. A graph C = (V, E) together with an assignment of the
integers-1, 0, +1 to the elements (vertices and edges) of C, oneinteger per element,
will becalled asemitransform on C if zero edges (edges assigned zeros) are adjacent
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A semitransform will beillustrated by indicating negative, zero and positive edges
with dashed, solid and dotted lines, and indicating negatives, zero and positive
vertices with x’s, solid dots and circles, respectively, Figure-3 shows three
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Figure 3: Some Semitransforms

semitransforms.

Let t be a semitransform on C. Four graphs will be commonly associated with t.
Graph Cisthe covering of t. The nonpositive elements of t definetheingraph | of t;
the nonnegative elements define the outgraph O of t; and the zero elements define
thelinking graph L of t. Therestrictions on the assignment function assurethat I, O
and L are well-defined. In Figure 3, the covering graph of t, is the cycle C,, the
ingraph and outgraph are both P, paths. Thelinking graphistheunionof K, and P,
ThegraphsC, I, O and L will be called the defining graphs of t. These letters, with
appropriate superscripts and subscripts, will denote the defining graphs of a
semitransform with corresponding superscriptsand subscripts. Clearly, if any three
of the defining graphs of a semitransform, when viewed as|abel ed subgraphs of C
areknown or if theingraph and outgraph are known, all of the defining-graphs are
completely determined. Defining the cardinality |G| of the graph G = (V, E) by |G|
=|V| + |E|. Weobviously have I| +|O] =|C| + [L| (1) ; p(l) + p(O) = p(C) + p(L)
(2); and q(I) + q(O) = q(C) + q(L) (3); where p(G) and q(G) denote the order and
sizeof graph G.

There are many waysto form a semitransform having G for itsingraph and G? for
it'soutgraph. To seethis, let C be any common supergraph of Gand G'. Let | and O
denote labeled subgraphs of C that areisomorphicto G and G’, respectively. Then
the semitransform having | and O astheingraph and outgraph is such atransform.
Note that C will be the covering graph of that transform only if | and O cover C,
i.e., every element of Cisanelement of either | or O. Lett beasemitransformon C
=(V, E) withassignment functiong: V*"E’! {* 1,0, 1} and let t’ beasemitranform
on C' =(V', E’) withassignment functionh: V' *”E’ "1 {* 1,0, 1}. Thentand t’ are
isomorphic and wewritet H” t’, if there existsan isomorphismf: V'! V' between
Cand C' suchthat g(v) = h(f(v)) for al v“ V and g(uw) = h(f(u)f(w)) for all uw “E.
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Let t be a semitransform on C with assignment function g. Let C' be a labeled
subgraph of Cand let g’ betherestriction of g to theelementsof C'. Thegraph C’
together with g2 isasemitransform t’ called a subtransform of t. If in addition, t’
has as many nonzero elements ast, then t' is areduction of t. If t” is any other
semitransform isomorphictot’, thent” isalso called a subtransform (or reduction
if suchisthecase) of t. The semitransformt, isreduction of the semitransformt,in
Figure 3. If t' is areduction of t, then t is an extension of t'. Clearly, if t' isa
reduction of t, then [X| * [Y] = X[ [Y'| (4); p(X) “ p(Y)=p(X) “ p(Y") (5); a(X)
“gqiY)=q(X)"“ q(Y") (6); Where X and Y denote any pair of defining graphs of t
and X' and Y’ denote the corresponding pair of defining graphsof t'.

Let (G G') bean ordered pair of graphs, and |et t be a semitransform. We shall say
(G G') isasemiaction tif there exists an extension t’ of t such that G and G’ are
isomorphicto theingraph and outgraph of t'. Theextensiont’ iscalled asemioverlay
of (G G") withrespecttot. Clearly, every semitransformtisasemioverlay of (I, O)
with respect to titself where | and O denote the ingraph and outgraph of t. Let (G,
G') be any semiaction of t having ingraph | outgraph O. It follows directly from
equations (5) and (6) that p(G’) = p(G)+p(0)" p(1) (7); a(G’) = a(G)+a(O)" a(l)
(8); IG'| = |G|+|O]" 1] (9);

Example 1

Let (G G’) beany semiaction of t in Figure 3. Lett beany overlay of (G G') with
respecttot, andlet C, I, O, L denotethe defining graphs of t. Thenthelinking graph
L of t contains all the verticesand edgesin | and O except for one edge, say uy, of
| whereu“ V(L) andy [V (L) and one edge of O adjacent to u, say uzwhere zV
(L). Define the functionf: V(I) "' V(O) by f (v) =vif v=yandf(v) = zif v=y.
Clearly, f defines an isomorphism between | and O. Thusif (GG2) isasemiaction
of t, then GE” G2 : It might be pointed out that equations (7) and (8) imply that G
and G2 have identical orders and sizes since | and O have identical orders and
sizes.

A graph Gistransformableinto G’ by an edgerotationif G containsdistinct vertices
u, v, wsuch that uv e E(G); uw E(G) and G? He Geuv+uw (5). An edgerotationis
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Figure 4. Various overlays of (Gg, Gg)
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an edge shift, if in addition, vw e E (G) (9). It is a straightforward matter to show
that Gistransformableinto G’ by an edgerotation (edge shift) if and only if (G G’)
isasemiaction of t, (t,) in Figure 4.

Transformsand Actions

Let Gand G’ betwo graphs. A maximum common subgraph of Gand G’ isagraph
H of maximum cardinality which isisomorphic to asubgraph of bothGand G'. A
minimum common supergraph of G and G’ isagraph H of minimum cardinality
whichisisomorphicto asupergraph of Gand G'. (See[8] for other uses of maximum
common subgraphs and minimum common supergraphs, referred to there as
maximum intersections and minimum unions, for comparing graphs of arbitrary
order and size). A semi overlay t' of (G G’) with respect to asemi transformtisan
overlay of (G, G') with respect totif thelinking graph of t' isamaximum common
subgraph of Gand G'. It follows directly from equation 1 that the linking graph of
t" isamaximum common subgraph of Gand G’ if and only if the covering graph of
t’" isaminimum common supergraph of Gand G'.

Figure 4 gives three overlays of graphs G, and G,. Note that overlays O, and O,
haveisomorphic linking graphs but nonisomorphic covering graphswhile overlays
O, and O, have nonisomorphic linking graphs.

A semiaction (G; G?) of asemitransformtisan action of t if tisareduction of an
overlay of (G G'). A semitransform t is atransform if there exists an action of t.
Thefollowing theorem establishes a consistency rel ationship between actionsand
overlays.

Theorem 1. A semioverlay of (G G’) with respect tot isan overlay with respect to
tif and only if (G, G’) isan action of t.

Proof: By definition, if t’ isan overlay of (G G’) withrespect tot, then (G G’) is
an action of t. To establish the only if relation, assume (G, G') isan action of t and
t" isasemioverlay of (G G’) with respect to t. By definition, there existsan overlay
t” of (G G') withrespect to t. Using equation (4) with X=1and Y = L, wehave |G|
=[P =L+ e[l | = |L' |+ [le[L]; (10); and |G| = [I”| = [L”| +[I"| e|L"| = ||
+[I] e|L]; (11). Equating the right hand sides of equations (10) and (11), we have
[L'| =|L"]. SinceL’ isasubgraph of both G and G’ of cardinality |L|, L’ must bea
maximum common subgraph.e

Not all semitransforms are transforms. In particular, the semitransforms given by
t,, of Figure 3 arenot. To seethis, suppose (G G') werean action of t,. By definition,
there exists an extension t of g, whichisan overlay of (G G’). LetC, I, O, L bethe
defining graphsof t. Then| Ee G and G2 Ee O. However, we showed in Example
1that G Ee G2. Sincetisan overlay, L isamaximum common subgraph of | and
O, and consequently, L =1 = O, i.e., t contains only zero elements. Sincet, isa
reduction of t, t, contains only zero elements, a contradiction. Thust, cannot be a
transform.

114 International Journal of Bioinformatics and Biological Science: v.1 n.1 p.79-85. March, 2013



Graph transforms for modeling chemical reaction pathways Jy)

Let ST, SO, T and O denote the set of semitransforms, semioverlays, transforms
and overlays. When defining semioverlays, it was shown that ST = SO. It has just
been shownthat T isaproper subset of ST. To seethat O issproper subset of T, note
that thelinking graph of t, in Figure 3 isthe complement of K, while the maximum
common subgraph of the ingraph and outgraph of t,isP, *e K. Thus, t, isnot an
overlay. To show that t, and t, of Figure 3 are transforms, let GEe K (1, 3) and G2
EeP, Lettbedefined by t, of Figure5. Let C, I, O and L be the defining graphs of
t. SinceG Eel and G2 Ee O, tisasemioverlay of (G G'). Clearly L Ee P, *e K  is
amaximum common subgraph of G and G2 . Thus, tisan overlay. Now we simply

Figure 5: An overlay and a semioverlay with respect to t,

note that both t, and t,are reductions of t.

It should also be noted that not all semiactions of a transform are actions of that
transform. To seethis, lett’ be defined by t, of Figure5. Clearly, t' isasemioverlay
of (P,, P4). Sincet, andt, of Figure 3 arereductionsof t', (P,, P,) isasemiaction of
both t,and t,. However, thelinking graph of t" isP, *” P_; which isnot amaximum
common subgraph of P, and P,. Thus, t" isnot overlay of t,, and consequently not of
t.. If follows from Theorem 1 that (P,, P,) isnot an action of either t, or t,.

Let S(t) and A(t) denote the sets of semiactions and actionsof t. It would be niceto
be able to prove that A(t) = A(t2 ) impliest E”t2.

Specification of M etadigraphs

A metadigraph M isapossibly infinite, diagraph D = (V, E) together with aninjective
function g: V'! that assigns a unique graph in O to each vertex of D. Thus a
metadigraph can be considered to be alabeled digraph in which the set of labelsis
aset of unlabeled graphs. It followsthat we can uniquely and unambiguously denote
M by ( E%) whereistheimage set g(V) of Vand E¢ ={g(u)g(V) : uv “E} i.e., wecan
uniquely represent M by ( E%). Examples of two metadigraphsweregivenin Figure
2. Let M’ beanother metadigraph D’ = (V', E’) with assignment function h, and let
(E" denote its corresponding labeled graph representation. ME"M’ if there exists
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an isomorphism f: V! V' between D and D’ such that g(v) = h(f(v)) for v “ V.
Clearly ME"M’ if and only if their corresponding labeled graph representations (
EY) and (E") areidentical ie., and E¢ = E". Thuswe shall say M isa submetadigraph
of M" if and E® E".

An ordered pair (T'; T°) of possibly infinite, setsof transformsisatransformkit. An
action (G G’) of tisblocked by t' if (a) t' is an extension of t, (b) (G G’) isan
actionof t" and (c) t' ” T°. Let A(t| T°) denote the actions of t that are not blocked by
t forany t' " T

Clearly, A(t|T®) = A(t)” , where the unionisover thoset’ in T which are extensions
of t. Anordered pair (G, G') of graphsisan action of k= (T, T?) if (G G2) “ A(t| ")
for somet “T'. A graph G2 will be said to be K-reachablefrom G if either G’ E” G
or there existsasequence G1, G,, Gnsuchthat GE’G1, G’ E”Gnand (G, Gi+1) is
anactionof Kfori=1,2,...,n" 1. Let be aset of graphs and let K be atransform
kit. Define the metadigraph M (K) as the metadigraph (E) where is the set of
graphs which are K-reachable from a graph in and where E is a subset of whose
members are actions of K. Given a metadigraph M, we shall say that (K) is a
specification of M if M (K) = M.

Example 2

Lett, and t, be defined by Figure 6. Let K = ({t,}, {t.}) and let M = ( E) denote the
metadigraph M, inFigure2,ie.,={P :n=1,..}andE={(P,P,,):i=1,.}. Then
({P 1}, K) isaspecification of M. To seethis, we simply notethat for every graph G
and every vertex u “V (G), (G G + u + uv) is an action of t, where u V (G).
Similarly, (G G+ u+uv) isanaction of tif and only if thedeg (v) > 1. It follows
that if (G, G?) isan action of K, then GE”? G + u + uvwheredeg (v) < 2. Thusif G
isapath P, then G2 E”P, + 1. Since every path is K-reachablefrom P, it follows
that

({P,}, K) isaspecification of M.

s o IVIVAY,
v

Figure 6: Transforms
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Example 3

Let M be metadigraph M, in Figure 2, and let t i=6,..., 9 be transforms defined by
Figure 6. Define T' = {t, t.} and T°= {t ; tg} and let K be the transform kit (T'; T°).
Then ({G,}, K) isaspecification of M. To seethis, notethat t, performs an edge shift
of theform G “ uv + uw where v is adjacent in G to a vertex w with deg (w)> 1,
whilet, blocksthose casesin which uisnot aterminal vertex. Likewise, t, addsan
edge between vertices u and v which are not adjacent, but which are both adjacent
to another vertex w, whilet, blocks those casesin which deg (w) = 2.

We now prove asacorollary to the following theorem that ' any metadigraph admits
aspecification for someK. First we prove alemma.

Lemma 1: If t isareduction of asemitransformt2 for which | E”12 and OE” O2
,thentE”t2 .

Proof: To seethat the reduction conditionisessential, let t be defined by transform
t.inFigure5, andlett2 bethetransformfor whichC2 E”P,E”L’. SinceLE"P,*"P,,
tandt2 arenot isomorphic. On the other hand, | E”OE”P,E”12 E”O2 . Thus, the
lemmafailswithout the reduction condition.

By definition, tisisomorphicto areductiont” of t2 for which|” and O” arelabeled
subgraphsof 12 and O2 . sinceI”"E” |E” 12 and O"E” OE” 02, it followsthat |” =
12 and O" = 02 . Thust” = t2 . Since tE” t", transitivity implies tE” t2 .
Let T_denotethe set of all transforms. Theorem 2 and its corollary show that T_can
be used to prove that all metadigraphs admit a specification with respect to some
transformkit.”

Theorem 2: Let K =(T', T®) be the transform kit based on any partitioning {T', T
°} of T_such that every member of T'isan overlay. Then (G, G*) isan action of K
if and only if there exists an overlay of (G G?)inT'.

Proof: Assumethat there existsan overlay tand T of (G, G2),i.e.,, | E”G and OE”
G2. If (G G2) isnot an action of K, then the action (G, G2 ) must be blocked by
somet “TP. Thisimpliesthat | isasubgraph of 12 and O isasubgraph of O2. By
definition, (G G2 ) must be an action of t2 i.e., t2 isareduction of an overlay of
(G G2). Thisimpliesthat |2 isasubgraph of G and that O2 isasubgraph of G2
.Itfollowsthat | E”12 and OE”O2 . By Lemma, tE”t2, acontradiction since T' and
TP aredigoint sets.

Onthe other hand, assume (G, G?) isan action of K. Then (G G?) “A(t|T") for some
t “T'. Let t? beany extension of t such that (G, G?) isan action of t2. If t2 “T®, then
(G G?) A(t]T®). Thus, all extensionsof t having (G G?) asan action must bein T2.
But (G G?) “A(t|T°) implies the existence of an overlay t? of (G, G?) with respect
tot. Asan extension of t having (G, G?) asan action, t? must liein T', i.e,, there
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existsan overlay of (G G?) “T" “

Corollary 1: For any metadigraph M, there exists a transform kit K such that (V
(M), K) isaspecification of M.

Proof: Write M = (E). For every edge GG2 “E, form an overlay of (G G2) as
noted in the section on semitransforms by letting the covering graph be aminimum
common supergraph of G and G’. Let T' denote the set of overlays so formed, and
let K=(T'; T “T"). By Theorem 2, GG* isan action of K if and only if GG* isan
edge of M. Since M and M ( K) have identical vertex set, M = M ( K). As there
generally exists many overlays of apair (G G?) of graphs, there will generally be
many kits K that satisfy the conditions of the preceding proof.”

Also see (for more) [5], [10], [11], [12], [13], [14].

Graph Theoretical Interpretation of Chemical Reaction Networks

(Heckel ,2006)gives an excellent overview of basic graph transformation theory. It
consists of an easy to-follow description of graph transformation systemsincluding
the representation of systems as graphs (type and instance graphs), rules and
transformations, constraints and application conditions. To explain its most basic
functionality, arulefirst looksfor apattern match for the left side of therulein the
input graph. Then, edges and nodesthat are not in the right hand side of theruleare
deleted, while edges and nodes that are newly created in the right hand side are
placed into the graph. Thispaper will beinvaluable asareference to basic concepts.

Modeling molecules and reaction networks using graphs is described as a very
natural application by much of the literature (Benko et al , 2003, Clark,2004 and
Rossello et al ,2005)discuss how aform of graphsisalready afundamental part of
organic chemistry, when depicting molecules by their structural formula. Atoms
can naturally be seen asnodesin agraph, with the bonds between them represented
as hi-directional edges. Double bonds and triple bonds could be modeled as two
edges and three edges respectively (as represented in Benko et al ,2003)) but this
would only be useful if areaction involved the breaking of one of the double bonds
in one or more of its elementary steps (this may be useful for the esterification case

study).

The problem with this basic approach, however, is a loss of information about
spatial configurations i.e. cis and trans isomers and chirality. Furthermore, the
valencies of individual atoms (the no. of other atoms it can bond to) are not
automatically conserved(Ehrig et al ,2006) offersan alternative approach that should
be much moreintuitive for chemists. By modeling the atoms as hyperedges and the
bonds between them as nodes, valency and chirality can both be incorporated into
the model. Each hyperedge is typed by atom, allowing for different numbers of
joined nodes, thereforethe concept of valency is preserved. The outgoing bondnodes
from ahyperedge arelabeled in order to show the three-dimensional ordering (related
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to D-glyceraldehyde), and preserving chirality. Thisis particularly important for
reactions where one enantiomer is more reactive in an elementary step, or where
only one enantiomer binds with a particular substrate. This is more prominent in
biochemical systems. The example of Citrate binding with Aconitase is givenin
(Ehrig et al 2006).

From the representation of molecules as graphs, envisioning reactions between
molecules as graph transformations is not a big step. Both (Rossello et al, 2005
and Yadav et al 2004) describe how reactionsinvolve the breaking and creation of
bonds in a molecule to transform it into a different molecule. In the graph, this
would mean an elementary reaction step would involve the del etion of edges (bonds)
and nodes not appearing in the right hand side of therule, and the creation of edges
and nodes that appear on the right hand side of the rule. As nodes and edges can
have attributes, attributes may also be updated during the transformation. Such
attributes could indicate energies of bonds, valencies or other useful information.

Another reason why graph transformation representations are so natural is their
“inherent concurrency” (Ehrig et al ,2006). Thisisthe ability for these systemsto
allow simultaneousreactions of different reactants, which isobviously what happens
inreal chemistry. Causal dependencies can be monitored along with conflicts, using
critical pair analysis. (Rossello et al ,2005) attributes the strength of graph
transformations in this field to their “pattern handling power”. In any chemical
reaction network, involving an arbitrarily large number of molecules, a multitude
of simultaneous reactions are possible. However, graph transformation rules define
the standard reactivity of certain functional groups.

Pattern matching provides a powerful search method for where these rules can be
applied within the network. This will be explored in both our case studies and a
more thorough explanation is giving in later sections of this report. (Ehrig et al
,2006) explains how graph transformationswork in detail, by summarizing the so-
called double pushout approach. The left side and right side of the rule span show
how the moleculewill change, whereasthe gluing graph between the left and right
hand side simply indicateswhich elementsareinvolved (“read”) intherule, but not
consumed. Inthe“toy” model of artificial chemistriesgivenin (Benko et al ,2003)
the essential idea is the same, but the gluing graph is labeled the context. The
visualization is a'so much more attuned to the structural formula representation
used by chemists- atomic/group nodesarejust |abeled by element symbolsand the
edges replaced by standard bond representations (with double and triple bonds
preserved). Although thismay be moreintuitivefor chemists, it doesnot allow usto
easily show attributes of nodes or edges, and also may seem alien to the way the
graphswill look in their eventual implementation using tools such asAGG. Using
standard graph representati ons should be easy enough to understand so the further
simplificationsin thetoy model are not necessary.
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(Ehrig 2006) suggests 3 typesof rulesin any graph transformation system. Symmetry
rulesare useful for the hyperedge model. Although chiral molecules cannot rearrange
their spatial configuration with respect to the other groups around the chiral carbon
centre, the bond connected to this carbon can itself rotate, meaning the groups can
change position. So that this is not considered a separate molecule, equivalence
rules can be set up. Expansion rules allow usto expand atoms grouped together in
one node/hyperedge (usually for simpler representation) into their full expanded
graph. Thisisnecessary if at some point in the graph the details of the group become
important e.g. one of the atoms is involved in a reaction. Again, this contracted
representation isfamiliar for chemists, who often contract large groupsin structural
formula when their exact spatial details are not contextually important. Reaction
rulesdefinethe change of groups. Our model should definitely incorporate the second
and third types of rules, and consider the symmetry rulesif the chirality preserving
hyperedge model is used.(Ehrig et al,2006)Ehprovides some other invaluable
information about how graph transformation theory can be applied to reactions,
and how atoms can be traced throughout the reaction and will serveasgood reference
material.

Sochastic graph transformation systems and rates of reaction

Heekel ,2005 and Heckel et al,2004 are excellent references explaining the extension
of agraph transformation system to astochasti c graph transformation system. Given
astart graph and a graph transformation system, alabel ed transition system can be
deduced which showsall the possibl e states (graphs) possible. Applied to areaction
network, each state would represent all the species (reactants, products, by-products
and intermediates) that would result from applying the graph transformation rules.
L abelsfrom stateto state can be assigned attributes such asa probability of reaction.
Thisisanalogousto the rate of the transformation from one step to the next, hence
essential to our derivation of the overall rate of reaction.(Heckel ,2005) provides
all the necessary definitions and procedures needed to convert a stochastic graph
transformation system to a Continuous Time Markov Chain, which then allowsthe
application of stochastic temporal logic to deducelong-term non-functional stochastic
properties of the system. Equivalence rules can be set up which check for certain
properties of the system at any point during the progress of the simulation, thereby
allowing usto monitor the presence of moleculesfor example. Querying the system
at regular intervals can then allow usto effectively measure properties proportional
to the concentration of chemical species.

Paper (Heckel, 2005)demonstrates the application of stochastic graph
transformations to P2P networks. Although the model is simpler (in that the rates
are more easily assigned) the example will be invaluable in understanding how
stochastic systemsare applied. Asthetheory behind stochasti c graph transformations
(Continuous TimeMarkov Chains, Qincidence matrices, Stochastic Tempora Logic)
can be quite difficult to grasp, both of these papers will be useful to return to. In
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deciding the rates of elementary steps, paper (Benko et al ,2003) provides a very
good starting point.

As discussed earlier, the Arrhenius equation relates the change in energy between
reactants and products with a rate of reaction. (Benko et al ,2003) discusses a
refinement whereinstead of entire molecules, just the energy of hybridized orbitals
involved in the reaction are considered. For complex reactions such as case study 2
we can follow the methodology described in (Benko et al ,2003) and automate the
procedure of assigning energies by looking at recurring sections of molecules
(characterized by different hybridized orbitals) rather than entire molecules. This
generalization step would avoid having to manually determine and assign energies
for the high number of possible speciesinvolved inthereaction (i.e. chainsof many
different lengths). It can incorporate more complicated electronic distributions
accurately into the model, such as -stabilization where adjacent -bonding orbital
can overlap in a molecule, lowering their overall energy and making them more
resistant to breaking and therefore reaction. (Benko et al ,2003) al so describes how
this method accounts for regioselectivity within a molecule. i.e. if there are two
places where a rule can be applied, calculating energies would force the rate of
reaction at one site to be realistically higher than the other. (Benko et al ,2003)
actualy goesonto suggest that the cal culation of energiescould be used for stochastic
simulations of reaction networks using the Gillespie algorithm.

There are other methodsin the literature that are used to model stochastic systems.
(Cardelli ,2008)and (K ecler ,1999) both use process languagesto specify thereaction
rulesand to derive useful properties. Cardellis paper (Cardelli ,2008) isparticularly
useful asit setsout to achieve what thisproject does using stochastic process algebra,
namely CCS and CGF. While this approach is probably moreintuitive and precise
for computer scientists, itlosesitsappeal for chemistsduetoitstechnical complexity.
The visual graph representation is much more useful in this respect because the
components are easily recognizable to chemists. The content of the paper is quite
technical and without abackground inlogic and automata course requires substantial
background reading to understand fully. The paper istherefore currently of limited
use. Nevertheless, it would be highly advisable to understand Cardellis approach,
in order to note hisassumptions and the way in which he assignsratesto elementary
reaction steps. For thisreason, aquick overview of -calculus (provided by Milner
2007)) and subsequent research into CCS still needs to be undertaken.

Implementation tools

AGG iswidely used by the graph transformation academic community. A brief
description of its utilization to a chemical reaction setting is given in (Ehrig et al
,2006). AGG does have several limitationsfor our purposesthough. Firstly, it cannot
be used for stochastic simulations. To obtain stochastic data, acombination of PRISM
and GROOVE (as described in (Heckel 2005) and Heckel et al 2004)) could be
used. (Erhard et al ,2008)also provides a very thorough presentation of FERN, a
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Java framework that can be used for stochastic simulation. The APl seems fairly
straightforward. It does not however provide its own visualization module. AGG
also hasitsown JavaAPI and acombination of the two tools could be coordinated
tofit the needs.

Further investigation of (Erhard et al ) will be necessary to achievethis. An appealing
feature of (Erhard et al,2008) isthat it providesimplementationsof several stochastic
simulation algorithms, namely the Gillespie algorithm, extended Gillespie algorithm
and atau-leaping algorithm. The framework appliesthe most appropriate algorithm
depending on the speed of the reaction, and can even change dynamically during
runtime. Other limitations of the software should also be considered before using
AGG such as minimum requirements, known bugs and elements of graph
transformation theory that are not implemented (such as the ability to input
hyperedges). The user manuals, bug reports and examples which can be found at
should be reviewed before/while using thetool.

Consideration for more complete modeling

Despite being an overview paper that haslittle relevant technical content, Yadav et
al ,2004)doesilluminate someinteresting pointsto consider if weareto progressto
a more complete model of real chemistries. In particular, “Global Context
Sensitivity” isdiscussed. Thisstatesthat physical propertiesplay animportant role
inchemical reactions, such astemperature, solvent, viscosity, catalystsand radiation
to name just afew. A graph transformation model may be limited in its ability to
incorporate such factors. This should betaken into account in thefinal stages of the
project. “Local Context Sensitivity” considersfor examplethe“three dimensional
conformation of reactive groups’ of a molecule and how this affects reactivity.
Large groups for example may block collision with incoming molecules, thereby
hindering reaction rates.

Thegraph structure of the chemical reaction network isrestated explicitly interms
of graph theory, precisely hypergraph theory. For example what is the graphical
interpretation of the null space of the stochiometric coefficient, and what about its
orthogonal complement? To that end we review the theory of flows on graphs. We
then consider the possibility of such atheory for flowson hypergraphs. A few formal
results are obtained. We also pose a number of problemsfor future consideration.

Hypergraph Basics and the M odel
A weighted hypergraphisan ordered tripleH (V, E, 50—8) (or just H). Vor V (H)
He admits the incidence matrix representation
SE My u(Z):
{w.., ifv e b i=1.mj=1..,m)

¥
Wy if v, e £

=

#
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Figure 7: A directed weighted hypergraph, represented according to the Sinanoglu
formalism. Weights appear in the figure as multiple connections.

isaset of vertices, and | V |= m. E or E(H) is aset of edges, subsets of V each of
which contains at least two vertices, and | E|=m; w:V x E’! N*isafunction
which assigns aweight W, to eachv e e. Ifv e, then W, is by default zero. Note
that H contains no self loops. A regular hypergraph isjust aweighted hypergraph
with all weights set to zero or one. Note that agraph isahypergraph G such that ee
eE |egl=2

A directed weighted hypergraph is a weighted hypergraph H together with an
orientation 6, and isdenoted H : : E’! Hx T isafunction which partitionsevery e
“Einto ahead set hj and atail sett .

H5?% admits the incidence matrix representation S"M,_ (Z):

2—-2-1 00
Figure 7is [ -1 2 0-1 1
-10 1 1-1

Of course, H admits an incidence matrix representation given by | S|. An example
of a directed weighted hypergraph appears in Figure 7. Precisely, the figure is a
Sinanoglu representation of a hypergraph (this formalism provides the clearest
graphical depiction of the type of hypergraphs presently under consideration).
Accordingto thisformalism, adirected edgeisrepresented by apair of white nodes
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connected by adashed line. The error along the dashed line pointsfrom the ‘ tail set
node’ of the edge to the ‘head set node’ of the edge. Of course, when a vertex is
connected to atail or head set node, the vertex is said to be in that set. The weight
associated with that vertex of the edge can either appear asanumerical label onits
connection or graphically as multiple connections (the second formalismisusedin
Figure 7). Theincidence matrix associated with Figure 7 is

We relate the chemical reaction network and the directed weighted hypergraph by
making the associ ati ons between vertices and chemical species, edgesand reactions,
head and tail sets and reaction products and reactants, respectively, and weights
and stoichiometric coefficients. Under this association (in so far as the given
definition of a hypergraph allows), catalysts are ignored. It is evident that the
incidence matrix is precisely the stoichiometric matrix of the reaction network.

Thetheory of hypergraphs has not been elaborated in the great detail that ishasfor
thetheory of graphs. However, afew important references do exist. For asomewhat
technical introduction to the field, see[15].

Cutsand Flowson Hypergraphs

The material of this subsection is adapted with modification from Chapter 14 in
[(Godsil and Royle ,2001). It also draws upon (Cardelli 2008)

Let RE denotethereal vector space with coordinatesindexed by the edges (precisely,
their indices) of H. The row space of S, that is the subspace of RE spanned by the
rowsof S, isknown asthe cut space of H?%, And the orthogonal complement of the
cut spaceis called the flow space of H. So the cut spaceisthe set of all vectorsx “
RE satisfying Sx = 0. By an abuse of notation we will simply refer to the cut and
flow space of H with the understanding that isfixed. In the following, these terms

0, ifej. g
.= -
7 Z Sir" if gy € C
iv e A Fit)
...... (B)

will bejustified.

The cut space

If (U, V) isapartition of V (H) (the vertex set of H), into two nonempty subsets.
The set of edgese“ E (H) withe)”U "0 and e)” V "0 is a cut, denoted C. We
shall call U and V the shores of a cut. A nonempty cut that is of minimal sizeis
called a bond.

124 International Journal of Bioinformatics and Biological Science: v.1 n.1 p.79-85. March, 2013



Graph transforms for modeling chemical reaction pathways Jy)

An oriented cut is a cut with one shore declared as positive V (+), and one shore
declared asnegative V (). Using the orientation of H, that isusing H?%, an oriented
cut C determines avector z eRE asfollows:

We refer to Z as the signed Characteristic vector of the oriented cut C; we will
have reason to i ntroduce the more compl ete notation z(C). For agiven oriented cut,
reversing the direction on the direction of the edges of H changes the sign of z
However, itisnot necessarily the case that the signed characteristic vector isinvariant
if all signsin Equ (B) are switched, that is, if we define the sign characteristic
vector interms of V (*) instead of V (+).

We call an edge e balanced if

0 = ¥
i Wli' a— Wli"
iv at iv ot

We speak of abalanced hypergraph every edge H is balanced. The components of
the sign characteristic vector associated with balanced edges are invariant with
respect to the two definitions of the characteristic vector described above. So, ina
balanced hypergraph the sign characteristic vector isinvariant with respect to the
two definitions.

Each vertex v, determines an oriented cut C (v,) with positive shore{v} and negative
shoreV (H) \v. Thei™ row of Sisthe signed characteristic vector of the cut C (v),
so these vectorslie in the cut space of H.

Theorem 3: If H isabalanced hypergraph, then for every cut C
for everv cut Cz{(C") = z (O ()

raFi+]

Proof: We consider the sum onthe RHS of Eq. (C). Letpa’ |V (+) [and I = (i ,...,
ip) an index set for the elements of V (+). Then, by the definition of the signed
characteristic vector

If gf © V(=) (so gg C). then 5;=0 (k=1 p)andtheprior sum

evaluatesto zerb. Otherwise,

7
= > 5.

ivee AV +)

If eV (+) (so e C), then by the fact that H is balanced, the prior sum evaluates to
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zero. Otherwise, e “C. The desired result follows from the definition of the signed
characteristic vector.”

¥
3oz (=205,
vaFi+] k=1

Corollary 2: If H isabalanced hypergraph, then the signed characteristic vector of
each cut liesin the cut space of H.

| suspect that more can be said of the cut space. In particular, there should exist
upper and lower bounds on the dimension of the cut space, if not a precise value,
that can be determined from basic topological properties of the hypergraph. And,
some minimal forest on a hypergraph should act as an alternative basis for the cut
space. This basis would have the advantage that it more accurately describes
“fundamental” transport structures of the hypergraph. Theseissueswill be considered
inthe future work.

Theflow space

The flow space of H isthe orthogonal complement of the cut space, so consists of
all vectors x e RE such that Sx = 0. We would like to extend the results from the
theory of flowson graphsjust we have donefor cuts of graphs. However the manner
by which to proceed becomes less clear than in the previous case. Whereasin the
previous section we were ableto extend the definition of acut, in this case we must
appropriately restrict the definition of a cycle. The precise definition of a cycle,
whichinits present form will seem like less of arestriction than it aught, is quite
cumbersome and requires additional formalism. Lacking follow up resultsto justify
such formalism, werefrain from said tedium.

Other Aspectsin the Theory of Hypergraphs

We define the linearization of H to be the directed weighted graph (H) obtained by
collapsing tail sets and headsets to single nodes of agraph. This construction then
admits analysis according to the usual techniques of graph theory. It should be
noted that this linearization resembles in some ways the technique of principle
component analysisin graph theory.

A few obviousremarks can be made of thisconstructive. First, thetimethat it takes
to perform the linearization ostensibly scales with the number of edges in the
hypergraph. Second the dimension of the flow space of (H) providesanimmediate
upper bound on the dimension of the flow space of H. It would also be niceif there
were a simple algebraic matrix operation that could immediately yield matrix of

(H).
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