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Abstract

Malaria is a serious issue for its negative impact on the community and the increasing resistance to drugs. Hence the 
treatment of malaria is a great challenge for the community. While studying the complex interaction of molecules between 
host and the malarial parasite from the point of entry and the subsequent invasion within the RBC, it seemed that there 
might be a certain crucial juncture where the process can be intervened. We have focussed on these interaction pathways 
and various antagonistic drugs that act in these pathways to deal with malarial infection.  CQ and Art are the frequently 
used drugs worldwide but, now-a-days the event of they becoming resistant have also been reported. Mutations in 
Digestive Vacuole Membrane Transporters make CQ ineffective whereas, the reason behind the Art resistant is the 
mutation in the K13 gene. The K13 gene product binds with the Nrf2, a transcriptional factor of anti-oxidants producing 
gene. This binding makes the Nrf2 ineffective causing the death of the parasites under stressed condition. Our aim of the 
study is to find a way out to inactivate Nrf2 in order to increase the Art efficiency.
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In human, malarial infection begins when an infected 
female anopheles mosquito bites the human host 
during which the malarial parasites (sporozoite 
stage) get transferred into the blood stream. The 
sporozoite enters the parenchymal cells of the liver 
in about 3-30 minutes[1][2], where they multiply 
asexually by binary fission, referred to as hepatic 
schizogony[3]. With the rupturing of the parenchymal 
cells, thousands of merozoites are released into the 
bloodstream[4][5]. Once in the bloodstream, they 
invade the erythrocytes or Red Blood Cells (RBCs) 
through a series of events. First, the merozoite-coat 
proteins interact with the RBC membrane proteins 
in a specific ligand-receptor fashion to form unique 
invasion pathways[6-8]. After that the host hemoglobin 
is digested to hematin, which is highly toxic to the 
parasite. So it is promptly polymerized to hemozoin, 
an insoluble brown coloured non-toxic pigment[9][10]. 

The parasite further grows into the schizont stage 
followed by merozoite stage in the RBC. When the 
RBC ultimately ruptures, the merozoites are released 
into the bloodstream to further infect other RBCs. The 
sexual development is thought to occur in schizonts 
by forming sexual rings that ultimately grow into 
gametocytes. After 10–12 days of development, 
mature male and female gametocytes are taken up 
by its primary host, the mosquito, during their blood 
meal within which sexual phase of the parasite life 
cycle is completed. In the infection pathway, there 
are some factors which have the potential to form 
important drug targets and it seems that if blocked 
or inhibited, they can lead to the suppression of the 
disease as a whole. But the efficacy of the system has 
to be subjected to further in silico, in vivo and in vitro 
study, of which we intend to pursue only the first one.
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Hemoglobin Digestion

Hemoglobin digestion is an essential step for the 
intraerythrocytic development of the malarial 
parasite (Fig. 1). The primary reason for this digestion 
seems to be the requirement of amino acids for the 
protein synthesis of the parasite[11]. The digestion 
occurs in the digestive vacuole (DV) of parasites by 
certain proteases (Table 1)[12].

Fig. 1: Hemoglobin digestion in Digestive Vacuole

Table 1: Proteases involved in hemoglobin digestion.[12-25]

Proteases Types Protein ID 
(PlasmoDB)

Plasmepsin Plasmepsin I PF3D7_1407900
Plasmepsin II PF3D7_1408000
Plasmepsin IV PF3D7_1407800

Falcipain Falcipain IIa PF3D7_1115700
Falcipain IIb PF3D7_1115300
Falcipain III PF3D7_1115400

HAP — PF3D7_1408100
Falcilysin — PF3D7_1360800
DPAP DPAP I PF3D7_1116700

DPAP II PF3D7_1247800
Aminopeptidases Leucyl 

aminopeptidase
PF3D7_1446200

Aspartyl 
aminopeptidase

PF3D7_0932300

Methionyl 
aminopeptidase Ia

PF3D7_0527300

Methionyl 
aminopeptidase  Ib

PF3D7_1015300

Methionyl 
aminopeptidase  Ic

PF3D7_ 0804400 

Methionyl 
aminopeptidase  II

PF3D7_1434600

AminopeptidaseP PF3D7_1454400
Subtilisin I PF3D7_1136900
Subtilisin II PF3D7_0507500
Subtilisin III PF3D7_0507200
Proline 
aminopeptidase

PF3D7_1401300

Aminoacyl proline 
aminopeptidase

PF3D7_1454400

Alanyl 
aminopeptidase

PF3D7_1311800

Upon hemoglobin digestion, heme is left behind. It 
is known to us that the heme (ferroprotoporphyrin 
IX) group gets dimerized into α-hematin 
(ferriprotoporphyrin IX (FP IX)) which is toxic to 
the parasites[24][26], as it causes peroxidative cleavage 
of unsaturated phospholipid in liposomes, leading 
to cell death[27]. So the parasitic proteases like heme 
detoxification protein (HDP) and histidine rich 
proteins (HRP II & III) polymerizes  α-hematin to 
hemozoin[28][29]. Hemozoin, an insoluble crystalline 
brown coloured pigment (also known as β-hematin), 
is stored in the DV. These brown pigments play a 
major role in malarial diagnostic procedure[30].

Digestive Vacuole Membrane Transporters 
(DVMT) involved in antimalarial drug trafficking

Antimalarial drugs are administered to treat malarial 
infection. There are various transporters involved 
for the availability of these drugs to their respective 
targets. In normal eukaryotic cells, the xenobiotic 
toxicity is reduced by transporting the drug via 
specific transporters into the DV or lysosome from 
where they are further expelled out[31]. Plasmodium 
species being eukaryotic in nature have two types 
of transporters involved in the trafficking of 
xenobiotic compounds: P-glycoprotein (P-gh) related 
transporters and Drug Metabolite transporters (DMT) 
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system[32]. The P-glycoprotein related transporters or 
ABC transporters (ATP Binding Cassette transporters) 
influx the drug into the DVs from the cytosol whereas 
the DMT transporters efflux out the drugs from the 
DVs[32-34].

P-gh related transporters include many proteins 
of which pfmdr1 (Plasmodium falciparum multidrug 
resistance-1) and pfmrp (Plasmodium falciparum 
multidrug resistance associated protein) caight 
our attention[35-37]. Both of them act as multidrug 
resistance proteins which remove drug from the 
cytosol by influxing it into the DV[35][36]. Both of 
them play important roles in the transportation of 
glutathione, chloroquine (CQ) and quinine (QN)[37].

The DMT system transporter include pfcrt (Plasmodium 
falciparum chloroquine resistance transporter) protein 
which acts as an anion channel, effluxing out drugs 
like CQ from the DV[38][39]. Other than CQ, it also 
effluxes alkaloids, amine compounds, amino acids 
and peptides that are derived from the digestion of 
globins[40][41].

Chloroquine (CQ) : mode of action and its 
resistance

Chloroquine is the frequently used, as well as the 
most effective drug against malaria known till now[42]. 
When the CQ enters the DV, it becomes protonated 
due to the acidic environment of DV[43][44]. So it cannot 
leave the DV and thus interacts with the FP IX and 
forms FP IX-CQ complex in 2:1 stoichiometric ratio[45]

[46]. FP IX-CQ complex causes peroxidative cleavage 
of unsaturated phospholipid in liposomes in the 
same way as FP IX, but with higher efficiency[21]. 
This complex inhibits the conversion of hematin to 
hemozoin, causing toxicity to the parasite and finally 
leading to cell death[47].

According to records, DV membrane transporter 
proteins chiefly, pfmdr1 and pfmrp promote the influx 
of CQ, but due to mutation the parasites became 
resistant to CQ (Fig. 2)[32]. There are many SNPs 
present all over the world for pfmdr1, among which, 
the frequency of N86Y is the highest, whereas no such 
records have been found for pfmrp. These mutations 
actively reduce the entry of CQ in DV[48-51].

Fig. 2:  Chloroquine mode of action and resistance

Mutation is also seen in pfcrt, which is responsible for 
efflux of the drug from DV. A number of mutations 
are seen in pfcrt of which K76T, Q271E, N326S, I356T, 
R371I are some of them. Out of these, K76T and R371I 
are most frequent[52]. These mutations increase the 
efflux of drug[38][53][54]. Mutation of pfmdr1 and pfcrt 
does not allow the accumulation of sufficient amount 
of CQ in DV to act against parasites and thereby the 
effectiveness of CQ against malaria treatment has 
become questionable.

Artemisinin : mode of action and its resistance

The resistance of Malarial Parasites against CQ led 
to the urgent need for discovering novel antimalarial 
drugs. In the year 2011, a new drug named 
Artemisinin (Art) came to be known which was found 
to be effective against malarial parasite[55][56]. Art gets 
activated by Fe+2 ion of heme and releases 3 ROS 
(Reactive Oxygen Species) in DV[57-59]. Activated Art, 
also known as Dihydroartemisinin (DHA), alkylates 
the parasitic proteins in its cytosol. Alkylation causes 
disfunctioning of these proteins which leads to 
cell death[60-62]. To understand the Art resistance, it 
is important to know about the function of Nrf2, a 
transcriptional factor.

In eukaryotic cell, Nrf2 is free to bind with the 
promoter region of different anti-oxidant coding 
genes to assist in their transcription under stress 
condition (Fig. 3-B)[63][68][69]. Under no-stress, Nrf2 
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remains bounded to KEAP1 (product of K13 gene) for 
its ubiquitination through Cullin3 (Fig. 3-A). KEAP1 
(product of K13 gene) acts as a substrate adapter for 
Cullin3 which is a ligase that ubiquitinates Nrf2, only 
if Nrf2 binds with KEAP1. As a result, no anti-oxidants 
are produced (Fig. 3-A)[71]. But under oxidative stress, 
ROS disrupts the critical cysteine residues in KEAP1. 
Due to this, Nrf2 gets detached from KEAP1 and 
thus Cullin3 cannot ubiquitinate Nrf2[72]. Now, this 
free Nrf2 moves into the nucleus and promotes the 
transcription of anti-oxidant producing genes (Fig. 
3-B). 

When Art is present in the cell, oxidative stress is 
increased due to the release of the 3 ROS at the time 
of Art activation (Fig. 3-C). This stress makes Nrf2 
free to bind with the UDP-glucuronosyl transferases 
(UGT) coding gene assisting in its transcription[68]

[69]. UGT (anti-oxidant) is responsible for production 
of glucuronic acid from DHA by glucuronidation. 
Glucuronic acid is subsequently effluxed out of the 
cell resulting in survival of the parasites (Fig. 3-D)
[70]. But before this can occur, DHA alkylates all the 
parasitic protein causing death of the parasites (Fig. 
3-E). 

Fig. 3: Artemisinin mode of action and resistance 

[A] No stress- Nrf2 degrades, 
[B] Oxidative stress/ Mutation- Nrf2 promotes degradation of DHA,
[C] Activation of Artemisinin,
[D] Survival of the parasites due to DHA detoxification,
[E] Death of the parasites due to alkylation of the parasitic protein.

In case of Art resistance, UGT glucuronidates the 
DHA into glucuronic acid before it can alkylate the 
parasitic proteins[73]. This resistance occurs due to the 
several SNPs in K13 (Kelch like domain) gene which 
causes conformational changes in KEAP1. As a result, 
Nrf2 cannot bind with KEAP1, so it is free to produce 
UGT independent of the presence or absence of 
DHA[73]. Hence, Art is expelled out before it can act. 
Almost 15 SNPs are found all over the world, out of 
which three SNPs are seen to have higher frequency 
viz F446I (27.2%), P574L (6.7%) and C580Y (1.6%)[74].

Results and Discussion

We have done an extensive review of a number of 
literatures pertaining to the life cycle of the parasite 
within the human host, specifically within the 
erythrocytes. The drugs which are administered to 
cure malaria are chloroquine (CQ) and very lately 
artemisinin (Art) has come into the scene. But 
individually both of them has turned somewhat 
ineffective, due to certain significant mutations 
that has occurred within the parasite genes. Hence 
the focus to cure malaria has shifted to a therapy 
known as ACT – Artemisin Combination Therapy[75]. 
But this too has its limitations[76]. There is a set of 
molecules, MSP or Merozoite Surface Protein, which 
are present in the parasites[77]. They bind with their 
receptor protein present on the host erythrocyte. 
This ligand-receptor interaction helps in the invasion 
of merozoites into the erythrocyte[6-8]. The unique 
binding sites of these proteins may act as a potential 
intervention point to inhibit the entry of merozoites 
into the erythrocytes. If merozoites are unable to 
enter into the erythrocytes, it will also be unable to 
produce malaria in the host. But there happens to 
be a number of MSPs on the surface of parasites that 
can help in invasion and it might be a mammoth task 
to identify the exact MSP which can be inhibited to 
restrict the entry of the parasite.  

It is known that mutation in the drug transporter 
protein coding genes make CQ ineffective[52-54]. 
Also mutation in the K13 gene increase the Art 
resistance[73][74]. When Art enters into the parasitic DV, 
ROS is produced that increase the oxidative stress 
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of the cell (Fig. 3-C). Under oxidative stress, Nrf2, 
a transcription factor of anti-oxidant coding gene, 
does not bind with KEAP1, the K13 gene product. 
As a result of which, ubiquitination of Nrf2 is not 
possible by Cullin3 (that also binds with KEAP1) and 
Nrf2 produces anti-oxidant to reduce the stress, that 
leads to the survival of the parasites (Fig. 3-B, D). It 
is quite evident from studies that the production of 
anti-oxidant is slower than the alkylation of parasitic 
protein by activated Art (DHA)[73]. This leads to the 
death of the parasite due to this alkylation (Fig. 3-E). 
The mutation in the K13 gene, leads to a situation 
where Nrf2 cannot bind with the KEAP1-Cullin3 
complex and produces anti-oxidants whether Art is 
present in the parasites or not (Fig. 3-A). Therefore Art 
becomes ineffective in those variants too. Such facts 
about the infection pathway enable us to understand 
that the binding of Nrf2 is important for the death 
of the parasites. This has turned our attention to a 
possible way out situation where blocking the Nrf2 
with a proper inhibitor will cease the anti-oxidant 
production thereby increasing the effectiveness of 
Art and then the drug will presumably be able to 
play its desired role against the malarial infection. 
This way out we presume can enhance the efficiency 
of existing therapies. A similar but opposite outcome 
has been noticed in the case of proliferation of 
ovarian cancer cells[78]. Oxidative stress production 
increases in cancer cells and this stress signals help in 
the proliferation of cancer cells. So in this case, anti-
oxidant production by Nrf2 is much essential to cease 
the proliferation of cancer cells. But in the case of 
malaria, the production of antioxidants will have to 
be reduced.  This event strengthens our case, and we 
intend to embark upon more detailed analysis of our 
target, nrf2, and screening of its possible inhibitors.

Conclusion

An inhibitor that would attach to Nrf2 is a possible 
way to deal the malarial infection. We plan to study 
this transcription factor, Nrf2, to understand its 
primary structure and secondary structure in detail. 
We intend to carry out this study in silico in the 

beginning which might possibly encompass toxicity 
screening of the inhibitor and its derivatives, active 
site prediction of the target followed by prediction 
of binding energy of the inhibitor-target interaction. 
Thereafter we would plan for either in vivo or in vitro 
or both in order to validate our results.
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