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ABSTRACT

Genome Analysis of a human being permits useful insight into the ancestry of that person and also facilitates the 
determination of weaknesses and susceptibilities of that person towards inherited diseases. The amount of accumulated 
genome data is increasing at a tremendous rate with the rapid development of genome sequencing technologies and 
gene prediction is one of the most challenging tasks in genome analysis. Many tools have been developed for gene 
prediction which still remains as an active research area. Gene prediction involves the analysis of the entire genomic data 
that is accumulated in the database and hence scrutinizing the predicted genes takes too much of time. However, the 
computational time can be reduced and the process can be made more effective through the selection of dominant genes. 
In this paper, a novel method is presented to predict the dominant genes of ALL/AML cancer. First, to train an FF-ANN 
a combinational data of the input dataset is generated and its dimensionality is reduced through Probability Principal 
Component Analysis (PPCA). Then, the classified database of ALL/AML cancer is given as the training dataset to design 
the FF-ANN. After the FF-ANN is designed, the genetic algorithm is applied on the test input sequence and the fitness 
function is computed using the designed FF-ANN. After that, the genetic operations crossover, mutation and selection are 
carried out. Finally, through analysis, the optimal dominant genes are predicted.

Keywords: Gene prediction, microarray gene expression data, probabilistic PCA (PPCA), dimensionality reduction, 
artificial neural network (ANN), back propagation (BP), dominant gene, genetic algorithm

newly sequenced genomes it is one of the challenges. 
Accurate and speedy tools are essential for the 
analysis of genomic sequences and for interpreting 
genes[2]. In such circumstances, conventional and 
modern signal processing techniques plays a vital part 
in these fields[1]. Genomic signal processing[11] (GSP) 
is a comparatively novel area in bio-informatics. It 
deals with the utilization of traditional digital signal 
processing (DSP) techniques in the representation 
and analysis of genomic data.

The code for the chemical composition of a particular 
protein is enclosed in the DNA which is a segment 

Microarray data have a high dimension of variables 
and a small sample size. In microarray data analyses, 
two important issues are how to choose genes, which 
provide reliable and good prediction for disease 
status, and how to determine the final gene set that is 
best for classification.[30]

In the public domain huge quantity of genomic 
and proteomic data are accessible. The capability to 
process this information in ways that are helpful to 
humankind is becoming more and more significant[1]. 
A fundamental step in the understanding of a genome 
is the computational recognition, and in the analysis of 
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of gene. Genes functions as the pattern for proteins 
and some extra products, and the main intermediary 
that translates gene information in the production of 
genetically encoded molecules is mRNA[4]. Usually 
sequences of nucleotide symbols, symbolic codons 
(triplets of nucleotides), or symbolic sequences of 
amino acids in the corresponding polypeptide chains 
present in the strands of DNA molecules represent the 
genomic information[2]. Gene expression microchip, 
which is perhaps the most rapidly expanding tool of 
genome analysis enables simultaneous monitoring 
of the expression levels of tens of thousands of genes 
under diverse experimental conditions. An influential 
tool in the study of collective gene reaction to changes 
in their environments is presented by gene expression 
microchip, and it also offers indications about the 
structures of the involved gene networks[3].

Nowadays, in a solitary experiment by employing 
microarrays the expression levels of thousands of 
genes, possibly all genes in an organism can be 
measured simultaneously[4]. In monitoring genome-
wide expression levels of gene microarray technology 
has become a requisite tool[5]. The evaluation of the 
gene expression profiles in a variety of organs which 
employs microarray technologies disclose separate 
genes, gene ensembles, and the metabolic ways 
underlying the structural and functional organization 
of an organ and its physiological function[6]. By 
the employment of microarray technology the 
diagnostic chore can be automated and the precision 
of the conventional diagnostic techniques can be 
enhanced. Simultaneous examination of thousands 
of gene expressions is being facilitated by microarray 
technology[7].

Efficient representation of cell characterization at 
the molecular level is possible with microarray 
technology which simultaneously measures the 
expression levels of tens of thousands of genes[8]. 
Gene expression analysis[10,12] that utilizes microarray 
technology has a broad variety of latent for 
discovering the biology of cells and organisms[9]. 
Accurate prediction and diagnosis of diseases is been 
assist by the microarray technology. For envisaging 

the entire gene structure, mainly the precise exon-
intron structure of a gene in a eukaryotic genomic 
DNA sequence gene identification is employed. After 
sequencing, finding the genes is one of the first and 
most significant steps in knowing the genome of a 
species[13]. A field of computational biology which 
is involved with algorithmically distinguishing the 
stretches of sequence, generally genomic DNA that 
are biologically functional is known as gene finding. 
This in particular not only engrosses protein-coding 
genes but also includes added functional elements 
for instance RNA genes and regulatory regions[14]. 
Some of the researches on the gene prediction are[15,16, 

17and 18].

Maxwell W. Libbrecht and William Stanfford Noble 
presented considerations and recurrent challenges in 
the application of supervised, semi-supervised and 
unsupervised machine learning methods, as well as of 
generative and discriminative modeling approaches 
and they provided general guidelines to assist in the 
selection of these machine learning methods and 
their practical application for the analysis of genetic 
and genomic data sets[28].

In this paper, an effective gene prediction technique 
is proposed which predicts the dominant genes. 
Initially, the classified microarray gene dataset 
(either Acute Myeloid Leukemia (AML) or Acute 
Lymphoblastic Leukemia (ALL)) which is of high 
dimension is reduced through the Probability 
Principal Component Analysis (PPCA) to generate 
the training dataset for the neural network. 
Consequently, through the training data the Feed 
Forward-ANN is designed and then the genetic 
algorithm is utilized to predict the dominant genes 
of ALL/AML cancer. Subsequently the gene which 
causes either AML or ALL is predicted devoid of 
analyzing the entire database. The rest of the paper 
is organized as follows. Section 2 details the genetic 
algorithm and in Section 3, a brief review of some of 
the existing works in gene prediction is presented. 
The proposed effective gene prediction is detailed 
in Section 4. Section 5 describes the results and 
discussion. The conclusions are summed up in 
Section 6.
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Genetic Algorithm

The heredity and evolution of living organisms are 
stimulated by computer programs known as Genetic 
Algorithms[1]. By utilizing GAs an ideal solution is 
possible even for multi modal objective functions 
because they are multi-point search methods. 
Moreover, GA’s are applicable to distinct problem in 
the search space. Hence, GA is not only very simple 
to use but also a very powerful optimization tool[2]. 
Strings are present in the search space of GA, each of 
which represents a candidate solution to the problem 
and are termed as chromosomes. Fitness value is the 
objective function value of each chromosome. A set 
of chromosomes along with their associated fitness 
is termed as population. The populations which are 
generated in an iteration of the genetic algorithm are 
termed as generations[3].

New generations (offspring) are generated by 
utilize crossover and mutation techniques. Two 
chromosomes are split by crossover and by taking 
one split part from each chromosome and combining 
those two new chromosomes are created. A single 
bit of a chromosome is changed by mutation. The 
chromosomes with the best fitness value calculated 
for a certain fitness criteria are retained while the 
other chromosomes are removed. The process is 
repeated until one chromosome has the best fitness 
value and that chromosome is selected as the solution 
for the problem[4].

Review on Related Researches

A handful of recent research works available in the 
literature are briefly reviewed in this section.

A computational technique for patient outcome 
prediction was introduced by Huiqing Liu et al.[19]. 
Two extreme types of patient samples were utilized 
for the training phase of this technique: (1) short-
term survivors who got an inopportune result in a 
small period and (2) long-term survivors who were 
preserving a positive outcome after a long follow-up 
time. These incredible training samples generated a 
clear platform for identifying suitable genes whose 
expression was intimately related to the outcome. With 

the assistance of a support vector machine the selected 
extreme samples and the important genes were then 
integrated in order to construct a prediction model. 
Every validation sample is owed a risk score that 
falls into one of the special pre-defined risk groups 
by employing that prediction model. Several public 
datasets adapts this technique. In quite a few cases 
as perceived in their Kaplan–Meier curves, patients 
in high and low risk groups who are rated by the 
suggested technique have obviously clear outcome 
position. They have also established that for enhancing 
the prediction accuracy, the suggestion of deciding 
merely extreme patient samples for training is efficient 
when diverse gene selection techniques are employed.

MiTarget which is a SVM classifier for miRNA target 
gene prediction was introduced by Kim et al.[20]. It 
employed a radial basis function kernel and was 
then categorized by structural, thermodynamic, and 
position-based features as a similarity measure for 
SVM features. For the first time, the features were 
presented and the mechanism of miRNA binding was 
reproduced. When compared with previous tools the 
SVM classifier has created high performance with the 
assistance of biologically pertinent data set that was 
attained from the literature. The important tasks for 
human miR-1, miR-124a, and miR-373 was computed 
by employing Gene Ontology (GO) analysis and the 
importance of pairing at positions 4, 5, and 6 in the 
5’ region of a miRNA was explained from a feature 
selection experiment. A web interface for the program 
was also presented by them.

Based on the information that a majority of exon 
sequences have a 3-base periodicity, and intron 
sequences do not have the sole characteristic, a 
technique to predict protein coding regions was 
developed by Changchuan Yin et al.[21]. By employing 
nucleotide distributions in the three codon positions 
of the DNA sequences this technique computed the 
3-base periodicity and the background noise of the 
stepwise DNA segments of the target DNA sequences. 
From the trends of the ratio of the 3-base periodicity 
to the background noise in the DNA sequences the 
exon and intron sequences can be recognized. Case 
studies on genes from diverse organisms illustrated 
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that the proposed technique was an efficient means 
for exon prediction

On the basis of a two-stage machine learning approach 
a gene prediction algorithm for metagenomic 
fragments was proposed by Hoff et al.[22]. Initially, 
for extracting the features from DNA sequences, 
linear discriminants were employed for monocodon 
usage, dicodon usage and translation initiation 
sites. Secondly, for calculating the chance in such a 
way that the open reading frame encodes a protein 
and an artificial neural network combines these 
characteristics with open reading frame length and 
fragment GC-content. This probability was employed 
for categorizing and achieving the gene candidates. 
By means of extensive training this technique 
formed fast single fragment predictions with fine 
quality sensitivity and specificity on artificially 
fragmented genomic DNA. Additionally, with high 
consistency this technique can precisely calculate 
translation initiation sites and distinguish complete 
genes from incomplete genes. Extensive machine 
learning techniques were well-suited for predicting 
the genes in metagenomic DNA fragments. Specially, 
the association of linear discriminants and neural 
networks was a very promising one and are believed 
to be taken into consideration for incorporating into 
metagenomic analysis pipelines.

Based on the physicochemical features of codons 
computed from molecular dynamics (MD) 
simulations an ab initio model for gene prediction 
in prokaryotic genomes was introduced by Poonam 
Singhal et al.[23]. For every codon the model requires 
a statement of three computed quantities, the 
double-helical trinucleotide base pairing energy, the 
base pair stacking energy, and a codon propensity 
index for protein-nucleic acid interactions. Fixing 
these three parameters, for each codon, eases the 
computation of the magnitude and direction of a 
cumulative three-dimensional vector for any length 
DNA sequence in all the six genomic reading frames. 
Analysis of 372 genomes containing 350,000 genes 
has confirmed that the orientations of the gene and 
non-gene vectors were significantly apart and a 
apparent difference was made probable between 

genic and non-genic sequences at a level comparable 
to or superior than currently accessible knowledge-
based models trained on the basis of empirical data, 
providing a strong evidence for the likelihood of a 
unique and valuable physicochemical classification 
of DNA sequences from codons to genomes.

For the genus Aspergillus a program called 
NetAspGene which is a dedicated, publicly available, 
splice site prediction was developed by Kai Wang et 
al.[24]. The most widespread mould pathogen that is 
the gene sequences from Aspergillus fumigatus, were 
employed to build and test their model. Aspergillus 
encloses smaller introns when compared with several 
animals and plants; and hence to cover both the donor 
and acceptor site information they have applied 
a larger window size on single local networks for 
training. NetAspGene was applied to other Aspergilli, 
including Aspergillus nidulans, Aspergillus oryzae, 
and Aspergillus niger. Valuation with independent 
data sets disclosed that NetAspGene executed 
significantly better splice site prediction than the 
other available tools.

Bayesian kernel was represented for the Support 
Vector Machine (SVM) by Alashwal et al.[25] so as 
to predict protein-protein interactions. By putting 
together the probability characteristic of the existing 
experimental protein-protein interactions data, the 
classifier performances that were amassed from 
diverse sources could be improved. In addition to 
that, so as to organize more research on the highly 
estimated interactions, the biologists are enhanced 
with the probabilistic outputs that are attained from 
the Bayesian kernel. The results have illustrated that 
by employing the Bayesian kernel when compared 
with the standard SVM kernels, the precision of the 
classifier has been enhanced. Those results have 
suggested that by means of Bayesian kernel, the 
protein-protein interaction could be computed with 
superior accuracy as when compared to the standard 
SVM kernels.

Zena M. Hira and Duncan F. Gillies summarized 
various ways of performing dimensionality reduction 
on high-dimensional microarray data. Many different 
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feature selection and feature extraction methods exist 
and they are being widely used. All these methods aim 
to remove redundant and irrelevant features so that 
classification of new instances will be more accurate. 
A popular source of data is microarrays, a biological 
platform for gathering gene expressions. Analysing 
microarrays can be difficult due to the size of the data 
they provide. In addition the complicated relations 
among the different genes make analysis more difficult 
and removing excess features can improve the quality 
of the results. We present some of the most popular 
methods for selecting significant features and provide 
a comparison between them. Their advantages and 
disadvantages are outlined in order to provide a 
clearer idea of when to use each one of them for saving 
computational time and resources[29].

Qingzhong Liu, Andrew H Sung, Zhongxue Chen, 
Jianzhong Liu, Lei Chen, Mengyu Qiao, Zhaohui 
Wang, Xudong Huang, and Youping Deng dealt with 
redundant information and improve classification. 
They proposed a gene selection method, Recursive 
Feature Addition, which combines supervised 
learning and statistical similarity measures and 
determined the final optimal gene set for prediction 
and classification, we propose an algorithm, Lagging 
Prediction Peephole Optimization. By using six 
benchmark microarray gene expression data sets, 
they compared Recursive Feature Addition with 
recently developed gene selection methods: Support 
Vector Machine Recursive Feature Elimination, 
Leave-One-Out Calculation Sequential Forward 
Selection and several others[30].

Proposed dominant gene prediction using 
Genetic algorithm

Generally, utilization of large gene dataset for disease 
analysis increases the computation time and degrades 
the performance of the process. Hence, a technique 
that requires less computational time to predict 
dominant genes is essential. Hence, an efficient 
technique is proposed to predict the dominant genes 
of cancer (either AML or ALL) from a microarray gene 
dataset. The three phases involved in the proposed 
technique are generation of training dataset, training 

through neural network and genetic algorithm based 
dominant gene prediction. Preprocess of dominant 
gene prediction process is illustrated in Fig. 1 and the 
feed forward neural network is depicted in Fig. 2.

Preprocess for dominant gene prediction

The pre-processing steps for predicting dominant 
genes are explained in the following steps.

Pradhan

Fig. 1: preprocessing steps for dominant gene prediction

Generation of training dataset

In this phase, in order to generate the training set 
for the ANN, it is essential to generate the possible 
combinations of the gene dataset. The two processes 
involved in the generation of training dataset are 
generation of possible combinational data and 
dimensionality reduction.

Possible combinational data are generated by 
classifying the microarray gene dataset with a lot of 
combinations within the dataset. This combinational 
data is generated with the intention of making easier 
the learning process for dominant genes prediction. 
Let Mij be the microarray gene dataset, where 0 < 
i < NS –1 and 0 < j < Ng –1. Here, NS represents the 
number of samples and Ng represents the number 
of genes and the size of Mij is given by NS × Ng. The 
number of possible combinational data is calculated 
as follow,
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The combinational data Mc ij has a high dimension of 
N’S × N’g which has to be reduced so as to be utilized 
in further processing.

Dimensionality reduction by PPCA

The dimension of the McIJ must be reduced for the 
upcoming processes. The dimensionality reduction is 
done utilizing the probabilistic Principal Component 
Analysis (PCA) and the high dimensional Mc IJ was 
converted to low dimension. The dimensionality 
reduced data is utilized as the training dataset for 
the neural network. Reduce the dimensionality 
using PPCA, which is a PCA that has a probabilistic 
model for the data. The PPCA algorithm which 
was composed by Tipping and Bishop[26] utilizes a 
rightly formed probability distribution of the higher 
dimensional data and calculates a low dimensional 
representation.

The instinctive attraction of the probabilistic 
representation is because of the fact that the definition 
of the probabilistic measure allows comparison 
with other probabilistic techniques, at the same 
time making statistical testing easier and permitting 
the utilization of Bayesian methods. By making 
use of PPCA as a generic Gaussian density model 
dimensionality reduction can be achieved. Efficient 
computation of the maximum-likelihood estimates 
for the parameters connected with the covariance 
matrix from the data principal components is 
facilitated through dimensionality reduction. The 

combinational data Mcij of dimension ''
gs NN × is 

reduced through the PPCA to 
ijcM̂c IJ of dimension

''''
gs NN × . In addition to dimensionality reduction, 

the PPCA finds more practical advantages such 
as finding missing data, classification and novelty 

detection [26]. Thus training dataset 
ijcM̂c ij for the ANN 

is generated with reduced dimension ''''
gs NN × .

Training phase: Training through Feed Forward 
ANN

The proposed technique incorporates a multilayer 

feed forward ANN with back propagation for 
predicting the dominant genes of the AML/ALL 
cancer. A feed-forward network maps a set of input 
values to a set of output values and can be thought 
of as the graphical representation of a parametric 
function. The dimensionality reduced microarray 
gene dataset is utilized for training the feed forward 
Neutral network with back propagation.

The single network N is trained in our proposed 
approach; the network is for receiving the 
dimensionality reduced gene dataset, and outputs 
the gene value whether it is ALL/AML. Hence, the 
network is configured with ''

gN  input units and 
hidden and an output unit.

Step 1: As the first step, set the input weights of every 
neuron, apart from the neurons in the input layer.

Step 2: A neural network with ''
gN input layers, a 

''
gN hidden layers and an output layer are designed. 

In this neural network, ''
sN  (dimensionality reduced) 

input neurons and a bias neuron, ''
gN  hidden 

neurons and a bias neuron and an output neuron iy  
are presented.

Step 3: The designed NN is weighted and biased. The 
developed NN is shown in the Fig. 2.

Step 4: The basis function and the activation function 
which is chosen for the designed NN are shown 
below:

Fig. 2: n Inputs one output Neural Network to train the gene 
dataset
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Eq.(2) is the basis function for the for the input layer, 

where cM̂  is the dimensionality reduced microarray 

gene data, ijw  is the weight of the neuron and α  is 
the bias. The sigmoid function for the hidden layer 
is given in Eq.(3) and the activation function for the 
output layer is given in Eq.(4). The basis function 
given in Eq. (1) is commonly used in all the remaining 
layers (hidden and output layer, but with the number 
of hidden and output neurons, respectively). The 
output of the ANN is determined is determined by 

giving it cM̂  as the input.

Step 5: The learning error is determined for the NN 
as follows:

∑
−
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0
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N

E 	 …(5)

Here, E  is the error in the FF-ANN, D  is the desired 

output and bY  is the actual output.

Minimization of Error by BP algorithm

The steps involved in training BP algorithm based 
NN is given below:

1	 Randomly generated weights in the interval 

[ ]1,0  are assigned to the neurons of the hidden 
layer and the output layer. But all neurons of the 
input layer have a constant weight of unity.

2	  In order to determine the BP error using Eq. (5), 
the training gene data sequence is given to the 
NN. Eq. (2), Eq. (3) and Eq. (4) show the basis 
function and transfer function.

3	 The weights of all the neurons are adjusted 
when the BP error is determined as follows,

= + ∆ij ij ijw w w  	 …(5)

The change in weight ∆ ijw  given in Eq. (3) can be 

determined as .y .  ∆ = γij ijw E where, E  is the BP 
error and γ  is the learning rate, normally it ranges 
from 0.2 to 0.5.

4	 After adjusting the weights, steps (2) and (3) 
are repeated until the BP error gets minimized. 
Normally, it is repeated till the criterion, 1.0<E  
is satisfied.

When the error gets minimized to a minimum value 
it is construed that the designed ANN is well trained 
for its further testing phase and the BP algorithm is 
terminated. Thus, the neural network is trained by 
using the samples. Then to determine the dominant 
genes of the ALL/AML cancer the genetic algorithm 
is applied.

Testing phase: Genetic Algorithm based 
dominant gene prediction of AML/ALL cancer

In the training phase, by means of the training 
dataset the FF-ANN is designed and the well trained 
network is utilized for predicting the dominant 
genes in an efficient manner. The genetic algorithm 
is applied on the classified test sequence and then 
this test sequence is evaluated and the dominant 
genes are predicted. In this GA based dominant gene 
prediction, initially, the random chromosomes are 
generated. The random chromosomes are the indices 
of the test sequence which are classified as ALL/
AML. The genes are generated without any repetition 
within the chromosome. After generating the 
chromosomes, the fitness is calculated by providing 
the genes of the chromosome which are the indices as 
input to the designed FF-ANN. Then, by subjecting 
the chromosomes to the genetic operations, crossover 
and mutation, newly generated chromosomes are 
obtained. Then the fitness is determined for the 
newly generated chromosomes. The generated new 
chromosomes are given as input to the designed 
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FF-ANN. The optimal chromosomes are obtained 
by analyzing the threshold value. The process is 
repeated until optimal gene values are obtained. The 
process of genetic algorithm to predict the dominant 
gene is depicted in Fig. 3.

Fig. 3: Proposed genetic algorithm for dominant gene prediction

Generation of chromosomes

Initially generate 
pN  number of random chromosomes 

and the number of genes in each chromosome relies 

on ''
gN i.e. number genes in the training dataset. As 

discussed earlier, the generated genes are the indices 
of the test input sequence.

{ })(
1

)(
3

)(
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n

kkkk DDDDD −=  	

10 −≤≤ pNk  10 −≤≤ nl 	 …(7)

n- Number of genes in the training dataset.

In eq. 7, )(k
lD  represents the thl  gene of the thk  

chromosome. These genes are generated without 
any repetition within the chromosomes. Once the NP chromosomes are generated then the fitness function 
is applied on the generated chromosomes

Fitness Function

The fitness of the generated chromosomes is evaluated 
using the fitness function by giving the chromosomes 
as input to the designed FF-ANN.
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c if test sequence is AML
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In Eq. (8), outN  is the network output obtained from 

the FF-ANN for the thk  chromosome and fitN  in 
Eq. (9) is the fitness value of the initially generated 
chromosomes.

Crossover and Mutation

The two point crossover is chosen with the crossover 
rate of CR amid diverse kinds of crossovers. Using eq. 
(10) and (11) two points are selected on the parent 
chromosomes in the two point crossover. The genes 
that are present in between the two points Cr1 and 
Cr2 are exchanged among the parent chromosomes, 
hence Np children chromosomes are attained. The 
crossover points Cr1 and Cr2 are determined as 
follows

1
| |

2
3

= −
l

cr
	

…(10)



Computational Machine Learning Application on Microarray Genomic Data

	 59

2
| |

2
2

= +
l

cr 	 …(11)

The children chromosomes are acquired now and 
their corresponding gene values are store discretely 

and their corresponding indices from the )(k
lD are 

stored in k

lnewD . Subsequently mutation is executed 
by employing Eq. (9) on the chromosomes that are 
obtained after crossover. Then, by reinstating Nm 
number of genes from every chromosome with new 
genes, mutation is achieved. The Nm numbers of gene 
are just genes, which have the least Nout (as determined 
from the Eq. (9)). The arbitrarily generated genes are 
the replaced genes devoid of any recurrence within 
the chromosome. Then, the selected chromosomes 
for crossover operation, and the chromosomes which 
are obtained from mutation are combined, hence the 
population pool is filled up with the NP chromosomes. 
Then, until a maximum iteration of Imax is reached this 
process is repeated iteratively.

Selection of optimal solution

The best chromosomes are selected from the group 
of chromosomes that is obtained after the process is 

repeated maxI  times. Here, the best chromosomes 
are the chromosomes which have minimum fitness 
for both ALL/AML which may depend upon the c 
value. The obtained best chromosomes are used to 
retrieve the corresponding gene values from the test 
sequence. The gene values of the ALL/AML cancer 
represented by the indices, which are obtained from 
the genes of the best chromosomes, are the dominant 
genes of the ALL/AML and they are retrieved in an 
effective manner.

Implementation Results and discussion

The proposed dominant gene prediction technique is 
implemented in the MATLAB platform (Version 7.10) 
and it is evaluated using the classified microarray 
gene expression data of human acute leukemias. The 
standard leukemia dataset for training and testing 
is obtained from[27]. The training leukemia dataset is 

of dimension Ng and Ns =38. This dimension of the 
dataset is too high to train the FF-ANN and hence 
its dimension is reduced using PPCA and then the 
training dataset of dimension CR= 0.5 and Nm = 5 is 
obtained. This training dataset is utilized to design 
the FF-ANN and then the test input sequence is 
tested through the genetic algorithm. The selected 
double point crossover points are cr1 = 8 and cr2 = 2 
with a crossover rate CR = 0.5 and for mutation Nm = 
5. After the completion of the crossover and mutation 
operations, based on the conditions given in section 
4, the optimal chromosomes were obtained. These 
optimal chromosomes are the indices of the ALL 
cancer test sequence. This process is repeated until it 
reaches the maximum iteration Imax 20. The training of 
FF-ANN is implemented using the Neural Network 
Toolbox in MATLAB. Fig. 4 shows the Regression 
of the designed FF-ANN and the Fig. 5 shows the 
performance of the designed FF-ANN. Fig. 6 depicts 
the performance of the ALL test sequence during the 
testing process and the Fig. 7 depicts the performance 
of the AML test sequence during the testing process.

Fig. 4: Regression output of the designed FF-ANN

Once the training process of the FF-ANN is 
completed, the input sequence either ALL or AML 
is tested through the genetic algorithm and then 
the dominant gene of either ALL or AML has been 
obtained. 
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Fig. 5: Performance of BP in training the designed FF-ANN

Fig. 6: The performance of ALL during the testing process

Fig. 7: The performance of AML during the testing process

In Fig. 6, the performance of the ALL input sequence 
has been tested and the obtained dominant gene 
based on some criteria (mentioned in the section 4) 
is depicted differently from the regular genes. In 
Fig. 7, the performance of the AML input sequence 
has been tested and the obtained dominant gene 
based on some criteria (mentioned in the section 4) is 
depicted differently from the regular genes. The table 
1 demonstrated the dominant genes of the ALL and 
AML below:

Table 1: The indices of dominant genes, dominant genes and 
their fitness

ALL AML

Indices Dominant 
Genes

Fitness 
by FF-
ANN

Indices Dominant 
Genes

Fitness 
by FF-
ANN

6041 1284

0.4467

3196 -162

2.2381

6378 -231 647 119
3845 -11 1024 12450
5764 36 2269 757
3267 390 4108 177
518 1396 1036 910
6485 62 1077 1361
3756 -482 4763 3381
3812 251 1905 118
4122 -16 3790 148

CONCLUSION

In this paper, an effective genetic algorithm based 
method to predict the dominant genes in the ALL/
AML dataset was discussed. The proposed technique, 
instead of analyzing the entire database, analyzed 
only the dominant genes and hence it has provided 
the optimal results. The FF-ANN was designed by 
means of training samples to assess the test sequence 
in the proposed genetic algorithm. Then, the fitness 
of the test sequence samples was evaluated through 
the designed FF-ANN. After that, the test input 
sequence was evaluated and the dominant genes 
were predicted through the genetic algorithm. The 
obtained fitness of the ALL dominant genes through 
the FF-ANN is 0.1167 and for AML dominant genes 
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is 2.2381. Table 1 demonstrated the dominant genes 
of the ALL and the AML.
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