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Abstract

The fuzzy logic and fuzzy numbers have been applied in many fields such as operation research, differential equations, 
fuzzy system reliability, control theory and management sciences etc. The fuzzy logic and fuzzy numbers are widely 
used in engineering applications also. In this paper we first describe Triangular Intuitionistic Fuzzy Number (TIFN) with 
arithmetic operations and solve a linear programming problem by Triangular Intuitionistic Fuzzy Number (TIFN) using 
simplex algorithm.
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A fuzzy set in a universe X is defined by membership 
function that maps X to the interval [0, 1] and 
therefore implies a linear, i.e. total ordering of the 
elements of X, one could argue that this makes them 
inadequate to deal with incomparable information. 
A possible solution, however, was already implicit 
in Zadeh’s[37] seminal paper in a footnote; he 
mentioned that “in a more general setting, the range 
of the membership function can be taken to be a 
suitable partially ordered set P.” In every sector of 
our life, there arise several problems which can be 
formulated mathematically as optimization problem 
with the goal to maximize the profit or to minimize 
the cost to formulate the problem mathematically, 
some constrains or restrictions are to be considered. 
Linear programming is a one of the most important 
operation research technique and it is applied in 
many sector especially related to the optimization 
problem. Linear programming was first introduced 

by George Dantzig in 1947. Linear programming 
is a technique that is to optimize the use of limited 
resources. Formulation of fuzzy linear programming 
was first introduced by Zimmermann. Deldago[27] 
makes a general model of fuzzy linear programming 
within the limits of technical coefficients fuzzy and 
fuzzy right side. Fung and Hu[35] introduced the 
linear programming with the technique coefficients 
based on fuzzy numbers. Verdegay[27] define the 
dual problem through parametric linear program 
and shows that the problem of primal - dual fuzzy 
linear program has the same solution. In this paper 
we consider the linear programming problem in its 
standard form to find out it’s feasible and optimal 
solution. We use simplex algorithm by trapezoidal 
intuitionistic fuzzy number to solve the linear 
programming problem.
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Basic concept of Intuitionistic Fuzzy Sets
Atanassov (1983)[1] presented the concept of IFS, 
and pointed out that this single value combines the 

evidence for ix X∈ , but does not indicate evidence 

against ix X∈ .An IFS 
i

A


 in X is characterised 

by a membership function ( )
A
i xµ


and a non 

-membership function ( )
A
i xν


. Here, ( )
A
i xµ


 and 

( )
A
i xν


are associated with each point in X, a real 

number in [ ]0,1  with the value of ( )
A
i xµ


 and 

( )
A
i xν


 at X representing the grade of membership 

and non-membership of x in 
i

A


. Thus, the closer the 

value of ( )
A
i xµ


 to unity and the value of ( )
A
i xν


 to 
zero, the higher the grade of membership is, and the 

lower the grade of non-membership of x. When 
i

A


is an ordinary set, its membership function (non-
membership function) can take on only two values, 

0 and 1. If ( ) 1
A
i xµ =


 and ( ) 0
A
i xν =


 , the element 

x does not belong to 
i

A


 , similarly, if ( ) 0
A
i xµ =


 and

( ) 1
A
i xν =


, the element x does not belong to 
i

A


 . An 

IFS becomes a fuzzy set 
i

A


 when ( ) 0
A
i xν =


 , but

( ) [ ]0,1
A

i

i x x Aµ ∈ ∀ ∈




.

Definition: Intuitionistic Fuzzy Set

Let a set X be fixed. An IFS 
i

A


in X is an object 

having the for ( ) ( ){ }, 0,1 , :
A A

i

i iA x x x x Xµ ν= ∈


 

where ( ) [ ]: 0,1
A
i x Xµ →


 and ( ) [ ]: 0,1
A
i x Xν →


define the degree of membership and degree of non-

membership respectively, of the element x X∈ to 

the set 
i

A


, which is a subset of X, for every element of 

x X∈ , ( ) ( )0 1.
A A
i ix xµ ν< + <
 

Definition: ( ),α β -cuts

A set of ( ),α β -cuts, generated by IFS 
i

A


 , where 

[ ], 0,1α β ∈ is a set of fixed numbers such that 

1α β+ ≤ is defined as

 

( ) ( )( )
( ) ( ) [ ]

,

, , :

, , , 0,1
A A

A A

i i i

i i

x x x x X
A

x x
α β

µ ν

µ α ν β α β

 ∈ =  
≥ ≤ ∈  



 

 

( ),α β -cuts denoted by ,

i

Aα β


 ,is defined as the crisp 

set of elements x which belong to 
i

A


 , at least to the 

degree α  and which does belong 
i

A


 to the degree β .

Definition: Intuitionistic Fuzzy Number

An IFN 
i

A


is

•	 an intuitionistic fuzzy sub-set of the real line

•	 normal, i.e., there is an 0x ∈ℜ  such that 

( )0 1
A
i xµ =


( )( )0 0
A
i xν =


•	 Convex for the membership function ( )
A
i xµ


i.e.

( )( ) ( ) ( )( ) [ ]1 2 1 2 1 21 min , , , 0,1
A A A
i i ix x x x x xµ λ λ µ µ λ+ − ≥ ∀ ∈ℜ ∈
  

•	 concave for the non-membership function 

( )
A
i xν


 i.e.

( )( ) ( ) ( )( ) [ ]1 2 1 2 1 21 max , , , 0,1
A A A
i i ix x x x x xν λ λ ν ν λ+ − ≤ ∀ ∈ℜ ∈
  
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Fig. 1: Membership and non membership functions of 
i

A


Definition: Triangular intuitionistic fuzzy 
number

A TIFN 
i

A


 is an IFN in R with the following 

membership function ( )( )
A
i xµ


 and non membership 

function
 

( )( )
A
i xν


( )

1

1 1
1 1

1
1 1

1 1

,

,

0,

A
i

x a

b a
a x b

c x
x b x c

c b
otherwise

µ

−
 − ≤ ≤

−= ≤ ≤ −




    and 

( )

1

1 1
1 1

1
1 1

1 1

,

,

1,

A
i

b x

b a
a x b

x b
x b x c

c b
otherwise

ν

−
 − ≤ ≤

−= ≤ ≤ −






Where / /
1 1 1 1 1a a b c c< < < <  and ( ) ( ), 0.5

A A
i ix xµ ν ≤
 

 

for ( ) ( )
A A
i ix x xµ ν= ∀ ∈ℜ
 

.

This TIFN is denoted by ( )/ /
1 1 1 1 1 1, , ; , ,TIFNA a b c a b c= .

Fig. 2: Membership and non-membership function of TIFN

1. Some arithmetic operations of Intuitionistic 
Fuzzy Number based on cuts method:

�� Properties 3.1

•	 If TIFN ( )/ /
1 1 1 1 1 1, , ; , ,

i

A a b c a b c=


 and 

( )0y ka k= > , then 
i i

Y k A=
 

is a TIFN 

( )/ /
1 1 1 1 1 1, , ; , ,ka kb kc ka kb kc .

•	 If ( )0y ka k= < , then 
i i

Y k A=
 

is a TIFN

( )/ /
1 1 1 1 1 1, , ; , ,kc kb ka kc kb ka .

�� Properties 3.2

If, ( )/ /
1 1 1 1 1 1, , ; , ,

i

A a b c a b c=


 
and 

( )/ /
2 2 2 2 2 2, , ; , ,

i

B a b c a b c=


 
are two TIFN then 

i i i

C A B= ⊕
  

is also TIFN.
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 ( )/ / / /
1 2 1 2 1 2 1 2 1 2 1 2, , ; , ,

i i

A B a a b b c c a a b b c c⊕ = + + + + + +
 

�� Properties 3.3

If ( )/ /
1 1 1 1 1 1, , ; , ,

i

A a b c a b c=


and

( )/ /
2 2 2 2 2 2, , ; , ,

i

B a b c a b c=


 
are two TIFN then 

i i i

P A B=
  

 is an approximated TIFN.

 ( )/ / / /
1 2 1 2 1 2 1 2 1 2 1 2, , ; , ,

i i

A B a a b b c c a a b b c c=
 



Construction and solution procedure of a LPP by 
Triangular intuitionistic Fuzzy Number (TIFN) 
using simplex algorithm:

Consider the following steps:
1.	 Make a change of variables and normalize the 

sign of the independent terms.

	 A change is made to the variable naming, 
establishing the following correspondences: 

x becomes 1x


and y becomes 2x


. As the 
independent terms of all restrictions are positive 
no further action is required. Otherwise there 
would be multiplied by “-1” on both sides of the 
inequality (noting that this operation also affects 
the type of restriction).

2.	 Normalize restrictions

The inequalities become equations by adding slack, 
surplus and artificial variables as the following table:

Inequality type Variable that appears

≥ - surplus + artificial

= + artificial

≤ + slack

In this case, a slack variable ( 3x


, 4x


and 5x


) is 
introduced in each of the restrictions of ≤  type, to 

convert them into equalities, resulting the system of 
linear equations:

( ) ( ) ( )1 2 32, 4,5;1,4,6 1,3,4;0,3,5 1,1,1;1,1,1 50x x x+ + =
  

( ) ( ) ( )1 2 42, 4,5;1,4,6 4,6,7;3,6,8 1,1,1;1,1,1 100x x x+ + =
  

( ) ( ) ( )1 2 52, 4,5;1, 4,6 3,5,6;2,5,7 1,1,1;1,1,1 90x x x+ + =
  

3.	 Match the objective function to zero.

( ) ( )
( ) ( ) ( )

1 2

3 4 5

 4,6,7;6,8 8,10,11;7,10,12

0,0,0;0,0,0 0,0,0;0,0,0 0,0,0;0,0,0

Max z x x

x x x

= +

+ +

 

  

4. Write the initial tableau of Simplex method
The initial tableau of Simplex method consists of 
all the coefficients of the decision variables of the 
original problem and the slack, surplus and artificial 
variables added in second step and constraints (in 
rows). The Cb column contains the coefficients of the 
variables that are in the base. The first row consists of 
the objective function coefficients, while the last row 
contains the objective function value and reduced 
costs Cj-Zj. The last row is calculated as follows:

ij b iZ C X= ×∑ for i = 1.....m. Although this is the 
first tableau of the Simplex method and all Cb are 
null, so the calculation can simplified.

5. Stopping condition
If the objective is to maximize, when in the last 
row there is no negative value between discounted 
costs the stop condition is reached. In that case, the 
algorithm reaches the end as there is no improvement 
possibility. The Zj value is the optimal solution of the 
problem. Another possible scenario is all values are 
negative or zero in the input variable column of the 
base. This indicates that the problem is not limited 
and the solution will always be improved. Otherwise, 
the following steps are executed iteratively.
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6. Choice of the input and output base variables
First, input base variable is determined. For this, 
column whose value in Zj row greater than the all 
positive value is chosen. In this example it would 
be the variable X2. If there are two or more equal 
coefficients satisfying the above condition (case of 
tie), then choice the basic variable. The column of 
the input base variable is called pivot column. Once 
obtained the input base variable, the output base 
variable is determined.

The decision is based on a simple calculation: divide 
each independent term between the corresponding 
value in the pivot column, if both values are strictly 
positive (greater than zero). The row whose result is 
minimum score is chosen.

If there is any value less than or equal to zero, this 
quotient will not be performed. If all values of the 

pivot column satisfy this condition, the stop condition 
will be reached and the problem has an unbounded 
solution. The term of the pivot column which led to 
the lesser positive quotient in the previous division 
indicates the row of the slack variable leaving the 
base. In this example, it is X4. This row is called pivot 
row.

If two or more quotients meet the choosing condition 
(case of tie), other than that basic variable is chosen 
(wherever possible). The intersection of pivot column 
and pivot row marks the pivot value.

1. Update table AU
The new coefficients of the tableau are calculated as 
follows:

In the pivot row each new value is calculated as:

New value = Previous value / Pivot

Table AU: 1

Cj (4,6,7;2,6,8) (8,10,11;7,10,12) (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0)

BV
1x


2x


3x


4x


5x


(0,0,0;0,0,0)
3x
 (2,4,5;1,4,6) (1,3,4;0,3,5) (1,1,1;1,1,1) (0,0,0;0,0,0) (0,0,0;0,0,0)

(0,0,0;0,0,0)
4x
 (2,4,5;1,4,6) (4,6,7;3,6,8) (0,0,0;0,0,0) (1,1,1;1,1,1) (0,0,0;0,0,0)

(0,0,0;0,0,0)
5x


(2,4,5;1,4,6) (3,5,6;2,5,7) (0,0,0;0,0,0) (0,0,0;0,0,0) (1,1,1;1,1,1)

  Zj (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0)
Cj-zj (4,6,7;2,6,8) (8,10,11;7,10,12) (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0)

Table AU: 2

Cj (4,6,7;2,6,8) (8,10,11;7,10,12) (0,0,0;0,0,0) (0,0,0;0,0,0) (0,0,0;0,0,0)

BV
1x


2x


3x


4x


5x


(0,0,0;0,0,0)
3x
 (3/2,2,15/7;1,2,9/4) (0,0,0;0,0,0) (1,1,1;1,1,1 ) -(1/4,1/2,4/7;0,1/2,5/8) (0,0,0;0,0,0)

(8,10,11;7,10,12)
2x
 (1/2,2/3,5/7;1/3,2/3,3/4) (1,1,1;1,1,1) (0,0,0;0,0,0) (1/7,1/5,1/4;1/8,1/5,1/3) (0,0,0;0,0,0)

(0,0,0;0,0,0)
5x
 (1/2,2/3,5/7;1/3,2/3,3/4) (0,0,0;0,0,0) (0,0,0;0,0,0) (8/7,2,11/4;7/8,2,4) (1,1,1;1,1,1)

  Zj (4,20/3,55/7;7/3,20/3,9) (8,10,11;7,10,12) (0,0,0;0,0,0) (8/7,2,11/4;7/8,2,4) (0,0,0;0,0,0)
Cj-zj -(0,2/3,6/7;1/3,2/3,1) (0,0,0;0,0,0) (0,0,0;0,0,0) - (2,5/3,11/7;7/3,5/3,3/2) (0,0,0;0,0,0)
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In the other rows each new value is calculated as:

New value = Previous value - (Previous value in pivot 
column * New value in pivot row)

So the pivot is normalized (its value becomes 1).

The tableau corresponding to this second iteration is 
table 2.

8. End of algorithm
It is noted that in the last row, all the coefficients are 

0≤ ; so the stop condition is fulfilled.

The solution is optimal as 0j jC Z− ≤ for all j. Hence 
the required solution is x1=(0,0,0;0,0,0) and x2=(25/2,
10,100/11;100/7,10,25/3).

Fig. 1: simplex algorithm

Application
In this paper we are going to solve a linear 
programming problem by triangular intuitionistic 
fuzzy number using simplex algorithm. Our problem 
is described below:

( ) ( )1 2 4,6,7;2,6,8 8,10,11;7,10,12Max z x x= + 

( ) ( )1 22, 4,5;1,4,6 1,3, 4;0,3,5 50x x+ =
 

( ) ( )1 22, 4,5;1,4,6 4,6,7;3,6,8 100x x+ =
 

( ) ( )1 22, 4,5;1,4,6 3,5,6;2,5,7 90x x+ =
 

Now this problem rewrite by introducing the slack 

variables 3x


, 4x


and 5x


as,

( ) ( ) ( )
( ) ( )

 4,6,7;2,6,8 8,10,11;7 ,10,12 0,0,0;0,0,0
1 2 3

0,0,0;0,0,0 0,0,0;0,0,0
4 5

Max z x x x

x x

= + +

+ +

  

 

Subject to constraint

( ) ( ) ( )1 2 32, 4,5;1,4,6 1,3,4;0,3,5 1,1,1;1,1,1 50x x x+ + =
  

 

( ) ( ) ( )1 2 42, 4,5;1,4,6 4,6,7;3,6,8 1,1,1;1,1,1 100x x x+ + =
  

 

( ) ( ) ( )1 2 52, 4,5;1,4,6 3,5,6;2,5,7 1,1,1;1,1,1 90x x x+ + =
  

CONCLUSION

In this paper TIFN and their arithmetic operations 
are described, we have also solved a simplex 
problem using TIFN. The procedure of solving 
simplex problem using TIFN may help us to solve 
many optimization problems. Our approaches and 
computational procedures may be efficient and 
simple to implement for calculation in a Trapezoidal 
fuzzy environment for all fields of engineering and 
science where impreciseness occur.
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