Original Article

Bisulfite sequence data reveals host-microbiota interaction in germfree and conventional mice

Year: 2021 | Month: June | Volume 9 | Issue 1

References (23)

1.Bäckhed, F. 2009. Changes in intestinal microflora in obesity: Cause or consequence? J. Pediatr. Gastroenterol. Nutr., 48, S56-S57.

View at Google Scholar

2.Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C.F. and Gordon, J.I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A., 101, 15718-15723.

View at Google Scholar

3.Collins, J., Borojevic, R., Verdu, E.F., Huizinga, J.D. and Ratcliffe, E.M. 2014. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil., 26, 98-107.

View at Google Scholar

4.Faith, J.J., Rey, F.E., O’donnell, D., Karlsson, M., McNulty, N.P., Kallstrom, G. and Gordon, J.I. 2010. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J., 4, 1094-1098.

View at Google Scholar

5.Feitsma, H. and Cuppen, E. 2008. Zebrafish as a cancer model. Mol. Cancer Res., 6, 685-694.

View at Google Scholar

6.Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W. and Paul, C.L. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U.S.A., 89, 1827-1831.

View at Google Scholar

7.Garg, R., Chevala, V.N., Shankar, R. and Jain, M. 2015. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci. Rep., 5, 1-16.

View at Google Scholar

8.Hajkova, P., El-Maarri, O., Engemann, S., Oswald, J., Olek, A. and Walter, J. 2002. DNA-methylation analysis by the bisulfiteassisted genomic sequencing method. In: DNA Methylation Protocols. Springer, Totowa, New Jersey. pp. 143-154.

View at Google Scholar

9.Jia, P.P., Sun, T., Junaid, M., Xiong, Y.H., Wang, Y.Q., Liu, L. and Pei, D.S. 2019. Chronic exposure to graphene oxide (GO) induced inflammation and differentially disturbed the intestinal microbiota in zebrafish. Environ. Sci., 6, 2452-2469.

View at Google Scholar

10.Jin, Y., Wu, S., Zeng, Z. and Fu, Z. 2017. Effects of environmental pollutants on gut microbiota. Environ. Pollut., 222, 1-9.

View at Google Scholar

11.Langmann, T., Mauerer, R., Zahn, A., Moehle, C., Probst, M., Stremmel, W. and Schmitz, G. 2003. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin. Chem., 49, 230-238.

View at Google Scholar

12.Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C. and Gérard, P. 2013. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 62, 1787-1794.

View at Google Scholar

13.Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X., Zhang, M., Wei, H., Chen, Y., Lu, H., Zuo, J., Su, M., Qiu, Y., Jia, W., Xiao, C., Smith, L.M., Yang, S., Holmes, E., Tang, H., Zhao, G., Nicholson, J.K., Li, L. and Zhao, L. 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. U.S.A., 105, 2117-2122.

View at Google Scholar

14.Liebisch, G., Lieser, B., Rathenberg, J., Drobnik, W. and Schmitz, G. 2004. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta, 1686, 108-117.

View at Google Scholar

15.Luczynski, P., McVey Neufeld, K.A., Oriach, C.S., Clarke, G., Dinan, T.G. and Cryan, J.F. 2016. Growing up in a bubble: Using germfree animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol., 19, pyw020.

View at Google Scholar

16.Margulis, L. and Fester, R., editors. 1991. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. Mit Press, United States.

View at Google Scholar

17.Martín, R., Bermúdez-Humarán, L.G. and Langella, P. 2016. Gnotobiotic rodents: An in vivo model for the study of microbemicrobe interactions. Front Microbiol, 7, 409.

View at Google Scholar

18.Packard, G.C. and Boardman, T.J. 1999. The use of percentages and size-specific indices to normalize physiological data for variation in body size: Wasted time, wasted effort? Comp. Biochem. Physiol. A Mol. Integr. Physiol., 122, 37-44.

View at Google Scholar

19.Rabot, S., Membrez, M., Blancher, F., Berger, B., Moine, D., Krause, L. and Chou, C.J. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep., 6, 1-11.

View at Google Scholar

20.Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L. and Gordon, J.I. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214.

View at Google Scholar

21.Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C. and Koga, Y. 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 558, 263-275.

View at Google Scholar

22.Wang, M. and Donovan, S.M. 2015. Human microbiota-associated swine: Current progress and future opportunities. ILAR J., 56, 63-73.

View at Google Scholar

23.Yang, L., Ho, N.Y., Alshut, R., Legradi, J., Weiss, C., Reischl, M. and Strähle, U. 2009. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod. Toxicol., 28, 245-253.

View at Google Scholar

@International Journal of Bioinformatics and Biological Sciences(IJBBS)| Printed by New Delhi Publishers 2540692 - Visitors since March 19, 2020