Original Article

Identifying a novel microRNA biomarker for renal cell carcinoma using a machine learning approach

Year: 2021 | Month: June | Volume 9 | Issue 1

References (29)

1.Al-Ali, B.M., Ress, A.L., Gerger, A. and Pichler, M. 2012. MicroRNAs in renal cell carcinoma: Implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res., 32, 3727-3732.

View at Google Scholar

2.Anon. 2014. Oncogenes and Tumor Suppressor Genes. American Cancer Society. Available from: https://www.cancer.org/cancer/ cancer-causes/genetics/genes-and-cancer/oncogenes-tumorsuppressor- genes.html. [Last accessed on 2021 Jan 28].

View at Google Scholar

3.Anon. 2018. Key Statistics About Kidney Cancer. American Cancer Society. Available from: https://www.cancer.org/cancer/ kidney-cancer/about/key-statistics.html. [Last accessed on 2021 Jan 28].

View at Google Scholar

4.Anon. 2019. Renal Cell Cancer Treatment (PDQ®)-Patient Version. National Cancer Institute. Available from: https://www.cancer. gov/types/kidney/patient/kidney-treatment-pdq. [Last accessed on 2021 Jan 28].

View at Google Scholar

5.Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M. and González-Fernández, Á. 2011. Assessment of the evolution of cancer treatment therapies. Cancers, 3, 3279- 3330.

View at Google Scholar

6.Bhargava, N., Sharma, G., Bhargava, R. and Mathuria, M. 2013. Decision tree analysis on j48 algorithm for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng., 3, 6.

View at Google Scholar

7.Bhowmick, S.S., Saha, I., Bhattacharjee, D., Genovese, L.M. and Geraci, F. 2018. Genome-wide analysis of NGS data to compile cancer-specific panels of miRNA biomarkers. PLoS One, 13, e0200353.

View at Google Scholar

8.Bifet, A. and Gavalda, R. 2009, August. Adaptive learning from evolving data streams. In: International Symposium on Intelligent Data Analysis. Springer, Berlin, Heidelberg. pp. 249-260.

View at Google Scholar

9.Cairns, P. 2011. Renal cell carcinoma. Cancer Biomark., 9, 461-473.

View at Google Scholar

10.Campbell, D. 2014. Almost Half of Cancer Patients Diagnosed Too Late, The Guardian. Available from: https://www.theguardian. com/society/2014/sep/22/cancer-late-diagnosis-half-patients. [Last accessed on 2021 Jan 29].

View at Google Scholar

11.Chang, I., Mitsui, Y., Fukuhara, S., Gill, A., Wong, D.K., Yamamura, S., Shahryari, V., Tabatabai, Z.L., Dahiya, R., Shin, D.M. and Tanaka, Y. 2015. Loss of miR-200c upregulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget, 6, 7774.

View at Google Scholar

12.Fedorko, M., Pacik, D., Wasserbauer, R., Juracek, J., Varga, G., Ghazal, M. and Nussir, M.I. 2016. MicroRNAs in the pathogenesis of renal cell carcinoma and their diagnostic and prognostic utility as cancer biomarkers. Int. J. Biol. Markers, 31(1), 26-37.

View at Google Scholar

13.Luan, J., Wang, J., Su, Q., Chen, X., Jiang, G. and Xu, X. 2016. Meta-analysis of the differentially expressed microRNA profiles in nasopharyngeal carcinoma. Oncotarget, 7, 10513.

View at Google Scholar

14.Martinez, A., Fullwood, P., Kondo, K., Kishida, T., Yao, M., Maher, E.R. and Latif, F. 2000. Role of chromosome 3p12-p21 tumour suppressor genes in clear cell renal cell carcinoma: Analysis of VHL dependent and VHL independent pathways of tumorigenesis. Mol. Pathol., 53, 137.

View at Google Scholar

15.Morii, K., Yamasaki, S., Doi, S., Irifuku, T., Sasaki, K., Doi, T., Nakashima, A., Arihiro, K. and Masaki, T. 2019. microRNA- 200c regulates KLOTHO expression in human kidney cells under oxidative stress. PLoS One, 14, e0218468.

View at Google Scholar

16.Moldovan, L., Batte, K.E., Trgovcich, J., Wisler, J., Marsh, C.B. and Piper, M. 2014. Methodological challenges in utilizing mi RNA s as circulating biomarkers. J. Cell. Mol. Med., 18, 371-390.

View at Google Scholar

17.Muhamed Ali, A., Zhuang, H., Ibrahim, A., Rehman, O., Huang, M. and Wu, A. 2018. A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Appl. Sci., 8, 2422.

View at Google Scholar

18.Nakada, C., Matsuura, K., Tsukamoto, Y., Tanigawa, M., Yoshimoto, T., Narimatsu, T., Nguyen, L.T., Hijiya, N., Uchida, T., Sato, F. and Mimata, H. 2008. Genome?wide microRNA expression profiling in renal cell carcinoma: Significant down?regulation of miR?141 and miR?200c. J. Pathol., 216, 418-427.

View at Google Scholar

19.O’Brien, J., Hayder, H., Zayed, Y. and Peng, C., 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 9, 402.

View at Google Scholar

20.Paranjape, T., Slack, F.J. and Weidhaas, J.B. 2009. MicroRNAs: Tools for cancer diagnostics. Gut, 58, 1546-1554.

View at Google Scholar

21.Rehman, O., Zhuang, H., Muhamed Ali, A., Ibrahim, A. and Li, Z. 2019. Validation of miRNAs as breast cancer biomarkers with a machine learning approach. Cancers, 11, 431.

View at Google Scholar

22.Sanchez, D.J. and Simon, M.C. 2018. Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochim. Biophys. Acta Rev. Cancer, 1870, 23-31.

View at Google Scholar

23.Strimbu, K. and Tavel, J.A. 2010. What are biomarkers? Curr. Opin. HIV AIDS, 5, 463.

View at Google Scholar

24.van IJzendoorn, D.G., Szuhai, K., Briaire-de Bruijn, I.H., Kostine, M., Kuijjer, M.L. and Bovée, J.V. 2019. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Boil., 15, e1006826.

View at Google Scholar

25.van IJzendoorn, D.G., Szuhai, K., Briaire-de Bruijn, I.H., Kostine, M., Kuijjer, M.L. and Bovée, J.V. 2019. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Boil., 15, e1006826.

View at Google Scholar

26.Wach, S., Nolte, E., Theil, A., Stöhr, C., Rau, T.T., Hartmann, A., Ekici, A., Keck, B., Taubert, H. and Wullich, B. 2013. MicroRNA profiles classify papillary renal cell carcinoma subtypes. Br. J. Cancer, 109, 714-722.

View at Google Scholar

27.Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J. 2005. Practical Machine Learning Tools and Techniques. Vol. 578. Morgan Kaufmann, United States. p. 1.

View at Google Scholar

28.Zakrzewska, M., Gruszka, R., Stawiski, K., Fendler, W., Kordacka, J., Grajkowska, W., Daszkiewicz, P., Liberski, P.P. and Zakrzewski, K. 2019. Expression-based decision tree model reveals distinct microRNA expression pattern in pediatric neuronal and mixed neuronal-glial tumors. BMC Cancer, 19, 1-11.

View at Google Scholar

29.Zheng, X., Fu, X., Wang, K. and Wang, M. 2020. Deep neural networks for human microRNA precursor detection. BMC Bioinform., 21, 1-7.

View at Google Scholar

@International Journal of Bioinformatics and Biological Sciences(IJBBS)| Printed by New Delhi Publishers

749267 - Visitors since March 19, 2020